56 lines
1.7 KiB
Python
56 lines
1.7 KiB
Python
import torch
|
|
import comfy.model_management
|
|
import comfy.sample
|
|
import comfy.samplers
|
|
import comfy.utils
|
|
|
|
|
|
class PerpNeg:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"model": ("MODEL", ),
|
|
"empty_conditioning": ("CONDITIONING", ),
|
|
"neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "patch"
|
|
|
|
CATEGORY = "_for_testing"
|
|
|
|
def patch(self, model, empty_conditioning, neg_scale):
|
|
m = model.clone()
|
|
nocond = comfy.sample.convert_cond(empty_conditioning)
|
|
|
|
def cfg_function(args):
|
|
model = args["model"]
|
|
noise_pred_pos = args["cond_denoised"]
|
|
noise_pred_neg = args["uncond_denoised"]
|
|
cond_scale = args["cond_scale"]
|
|
x = args["input"]
|
|
sigma = args["sigma"]
|
|
model_options = args["model_options"]
|
|
nocond_processed = comfy.samplers.encode_model_conds(model.extra_conds, nocond, x, x.device, "negative")
|
|
|
|
(noise_pred_nocond, _) = comfy.samplers.calc_cond_uncond_batch(model, nocond_processed, None, x, sigma, model_options)
|
|
|
|
pos = noise_pred_pos - noise_pred_nocond
|
|
neg = noise_pred_neg - noise_pred_nocond
|
|
perp = neg - ((torch.mul(neg, pos).sum())/(torch.norm(pos)**2)) * pos
|
|
perp_neg = perp * neg_scale
|
|
cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg)
|
|
cfg_result = x - cfg_result
|
|
return cfg_result
|
|
|
|
m.set_model_sampler_cfg_function(cfg_function)
|
|
|
|
return (m, )
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"PerpNeg": PerpNeg,
|
|
}
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"PerpNeg": "Perp-Neg",
|
|
}
|