384 lines
10 KiB
Python
384 lines
10 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
from . import block as B
|
|
|
|
|
|
class Get_gradient_nopadding(nn.Module):
|
|
def __init__(self):
|
|
super(Get_gradient_nopadding, self).__init__()
|
|
kernel_v = [[0, -1, 0], [0, 0, 0], [0, 1, 0]]
|
|
kernel_h = [[0, 0, 0], [-1, 0, 1], [0, 0, 0]]
|
|
kernel_h = torch.FloatTensor(kernel_h).unsqueeze(0).unsqueeze(0)
|
|
kernel_v = torch.FloatTensor(kernel_v).unsqueeze(0).unsqueeze(0)
|
|
self.weight_h = nn.Parameter(data=kernel_h, requires_grad=False) # type: ignore
|
|
|
|
self.weight_v = nn.Parameter(data=kernel_v, requires_grad=False) # type: ignore
|
|
|
|
def forward(self, x):
|
|
x_list = []
|
|
for i in range(x.shape[1]):
|
|
x_i = x[:, i]
|
|
x_i_v = F.conv2d(x_i.unsqueeze(1), self.weight_v, padding=1)
|
|
x_i_h = F.conv2d(x_i.unsqueeze(1), self.weight_h, padding=1)
|
|
x_i = torch.sqrt(torch.pow(x_i_v, 2) + torch.pow(x_i_h, 2) + 1e-6)
|
|
x_list.append(x_i)
|
|
|
|
x = torch.cat(x_list, dim=1)
|
|
|
|
return x
|
|
|
|
|
|
class SPSRNet(nn.Module):
|
|
def __init__(
|
|
self,
|
|
state_dict,
|
|
norm=None,
|
|
act: str = "leakyrelu",
|
|
upsampler: str = "upconv",
|
|
mode: B.ConvMode = "CNA",
|
|
):
|
|
super(SPSRNet, self).__init__()
|
|
self.model_arch = "SPSR"
|
|
self.sub_type = "SR"
|
|
|
|
self.state = state_dict
|
|
self.norm = norm
|
|
self.act = act
|
|
self.upsampler = upsampler
|
|
self.mode = mode
|
|
|
|
self.num_blocks = self.get_num_blocks()
|
|
|
|
self.in_nc: int = self.state["model.0.weight"].shape[1]
|
|
self.out_nc: int = self.state["f_HR_conv1.0.bias"].shape[0]
|
|
|
|
self.scale = self.get_scale(4)
|
|
self.num_filters: int = self.state["model.0.weight"].shape[0]
|
|
|
|
self.supports_fp16 = True
|
|
self.supports_bfp16 = True
|
|
self.min_size_restriction = None
|
|
|
|
n_upscale = int(math.log(self.scale, 2))
|
|
if self.scale == 3:
|
|
n_upscale = 1
|
|
|
|
fea_conv = B.conv_block(
|
|
self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None
|
|
)
|
|
rb_blocks = [
|
|
B.RRDB(
|
|
self.num_filters,
|
|
kernel_size=3,
|
|
gc=32,
|
|
stride=1,
|
|
bias=True,
|
|
pad_type="zero",
|
|
norm_type=norm,
|
|
act_type=act,
|
|
mode="CNA",
|
|
)
|
|
for _ in range(self.num_blocks)
|
|
]
|
|
LR_conv = B.conv_block(
|
|
self.num_filters,
|
|
self.num_filters,
|
|
kernel_size=3,
|
|
norm_type=norm,
|
|
act_type=None,
|
|
mode=mode,
|
|
)
|
|
|
|
if upsampler == "upconv":
|
|
upsample_block = B.upconv_block
|
|
elif upsampler == "pixelshuffle":
|
|
upsample_block = B.pixelshuffle_block
|
|
else:
|
|
raise NotImplementedError(f"upsample mode [{upsampler}] is not found")
|
|
if self.scale == 3:
|
|
a_upsampler = upsample_block(
|
|
self.num_filters, self.num_filters, 3, act_type=act
|
|
)
|
|
else:
|
|
a_upsampler = [
|
|
upsample_block(self.num_filters, self.num_filters, act_type=act)
|
|
for _ in range(n_upscale)
|
|
]
|
|
self.HR_conv0_new = B.conv_block(
|
|
self.num_filters,
|
|
self.num_filters,
|
|
kernel_size=3,
|
|
norm_type=None,
|
|
act_type=act,
|
|
)
|
|
self.HR_conv1_new = B.conv_block(
|
|
self.num_filters,
|
|
self.num_filters,
|
|
kernel_size=3,
|
|
norm_type=None,
|
|
act_type=None,
|
|
)
|
|
|
|
self.model = B.sequential(
|
|
fea_conv,
|
|
B.ShortcutBlockSPSR(B.sequential(*rb_blocks, LR_conv)),
|
|
*a_upsampler,
|
|
self.HR_conv0_new,
|
|
)
|
|
|
|
self.get_g_nopadding = Get_gradient_nopadding()
|
|
|
|
self.b_fea_conv = B.conv_block(
|
|
self.in_nc, self.num_filters, kernel_size=3, norm_type=None, act_type=None
|
|
)
|
|
|
|
self.b_concat_1 = B.conv_block(
|
|
2 * self.num_filters,
|
|
self.num_filters,
|
|
kernel_size=3,
|
|
norm_type=None,
|
|
act_type=None,
|
|
)
|
|
self.b_block_1 = B.RRDB(
|
|
self.num_filters * 2,
|
|
kernel_size=3,
|
|
gc=32,
|
|
stride=1,
|
|
bias=True,
|
|
pad_type="zero",
|
|
norm_type=norm,
|
|
act_type=act,
|
|
mode="CNA",
|
|
)
|
|
|
|
self.b_concat_2 = B.conv_block(
|
|
2 * self.num_filters,
|
|
self.num_filters,
|
|
kernel_size=3,
|
|
norm_type=None,
|
|
act_type=None,
|
|
)
|
|
self.b_block_2 = B.RRDB(
|
|
self.num_filters * 2,
|
|
kernel_size=3,
|
|
gc=32,
|
|
stride=1,
|
|
bias=True,
|
|
pad_type="zero",
|
|
norm_type=norm,
|
|
act_type=act,
|
|
mode="CNA",
|
|
)
|
|
|
|
self.b_concat_3 = B.conv_block(
|
|
2 * self.num_filters,
|
|
self.num_filters,
|
|
kernel_size=3,
|
|
norm_type=None,
|
|
act_type=None,
|
|
)
|
|
self.b_block_3 = B.RRDB(
|
|
self.num_filters * 2,
|
|
kernel_size=3,
|
|
gc=32,
|
|
stride=1,
|
|
bias=True,
|
|
pad_type="zero",
|
|
norm_type=norm,
|
|
act_type=act,
|
|
mode="CNA",
|
|
)
|
|
|
|
self.b_concat_4 = B.conv_block(
|
|
2 * self.num_filters,
|
|
self.num_filters,
|
|
kernel_size=3,
|
|
norm_type=None,
|
|
act_type=None,
|
|
)
|
|
self.b_block_4 = B.RRDB(
|
|
self.num_filters * 2,
|
|
kernel_size=3,
|
|
gc=32,
|
|
stride=1,
|
|
bias=True,
|
|
pad_type="zero",
|
|
norm_type=norm,
|
|
act_type=act,
|
|
mode="CNA",
|
|
)
|
|
|
|
self.b_LR_conv = B.conv_block(
|
|
self.num_filters,
|
|
self.num_filters,
|
|
kernel_size=3,
|
|
norm_type=norm,
|
|
act_type=None,
|
|
mode=mode,
|
|
)
|
|
|
|
if upsampler == "upconv":
|
|
upsample_block = B.upconv_block
|
|
elif upsampler == "pixelshuffle":
|
|
upsample_block = B.pixelshuffle_block
|
|
else:
|
|
raise NotImplementedError(f"upsample mode [{upsampler}] is not found")
|
|
if self.scale == 3:
|
|
b_upsampler = upsample_block(
|
|
self.num_filters, self.num_filters, 3, act_type=act
|
|
)
|
|
else:
|
|
b_upsampler = [
|
|
upsample_block(self.num_filters, self.num_filters, act_type=act)
|
|
for _ in range(n_upscale)
|
|
]
|
|
|
|
b_HR_conv0 = B.conv_block(
|
|
self.num_filters,
|
|
self.num_filters,
|
|
kernel_size=3,
|
|
norm_type=None,
|
|
act_type=act,
|
|
)
|
|
b_HR_conv1 = B.conv_block(
|
|
self.num_filters,
|
|
self.num_filters,
|
|
kernel_size=3,
|
|
norm_type=None,
|
|
act_type=None,
|
|
)
|
|
|
|
self.b_module = B.sequential(*b_upsampler, b_HR_conv0, b_HR_conv1)
|
|
|
|
self.conv_w = B.conv_block(
|
|
self.num_filters, self.out_nc, kernel_size=1, norm_type=None, act_type=None
|
|
)
|
|
|
|
self.f_concat = B.conv_block(
|
|
self.num_filters * 2,
|
|
self.num_filters,
|
|
kernel_size=3,
|
|
norm_type=None,
|
|
act_type=None,
|
|
)
|
|
|
|
self.f_block = B.RRDB(
|
|
self.num_filters * 2,
|
|
kernel_size=3,
|
|
gc=32,
|
|
stride=1,
|
|
bias=True,
|
|
pad_type="zero",
|
|
norm_type=norm,
|
|
act_type=act,
|
|
mode="CNA",
|
|
)
|
|
|
|
self.f_HR_conv0 = B.conv_block(
|
|
self.num_filters,
|
|
self.num_filters,
|
|
kernel_size=3,
|
|
norm_type=None,
|
|
act_type=act,
|
|
)
|
|
self.f_HR_conv1 = B.conv_block(
|
|
self.num_filters, self.out_nc, kernel_size=3, norm_type=None, act_type=None
|
|
)
|
|
|
|
self.load_state_dict(self.state, strict=False)
|
|
|
|
def get_scale(self, min_part: int = 4) -> int:
|
|
n = 0
|
|
for part in list(self.state):
|
|
parts = part.split(".")
|
|
if len(parts) == 3:
|
|
part_num = int(parts[1])
|
|
if part_num > min_part and parts[0] == "model" and parts[2] == "weight":
|
|
n += 1
|
|
return 2**n
|
|
|
|
def get_num_blocks(self) -> int:
|
|
nb = 0
|
|
for part in list(self.state):
|
|
parts = part.split(".")
|
|
n_parts = len(parts)
|
|
if n_parts == 5 and parts[2] == "sub":
|
|
nb = int(parts[3])
|
|
return nb
|
|
|
|
def forward(self, x):
|
|
x_grad = self.get_g_nopadding(x)
|
|
x = self.model[0](x)
|
|
|
|
x, block_list = self.model[1](x)
|
|
|
|
x_ori = x
|
|
for i in range(5):
|
|
x = block_list[i](x)
|
|
x_fea1 = x
|
|
|
|
for i in range(5):
|
|
x = block_list[i + 5](x)
|
|
x_fea2 = x
|
|
|
|
for i in range(5):
|
|
x = block_list[i + 10](x)
|
|
x_fea3 = x
|
|
|
|
for i in range(5):
|
|
x = block_list[i + 15](x)
|
|
x_fea4 = x
|
|
|
|
x = block_list[20:](x)
|
|
# short cut
|
|
x = x_ori + x
|
|
x = self.model[2:](x)
|
|
x = self.HR_conv1_new(x)
|
|
|
|
x_b_fea = self.b_fea_conv(x_grad)
|
|
x_cat_1 = torch.cat([x_b_fea, x_fea1], dim=1)
|
|
|
|
x_cat_1 = self.b_block_1(x_cat_1)
|
|
x_cat_1 = self.b_concat_1(x_cat_1)
|
|
|
|
x_cat_2 = torch.cat([x_cat_1, x_fea2], dim=1)
|
|
|
|
x_cat_2 = self.b_block_2(x_cat_2)
|
|
x_cat_2 = self.b_concat_2(x_cat_2)
|
|
|
|
x_cat_3 = torch.cat([x_cat_2, x_fea3], dim=1)
|
|
|
|
x_cat_3 = self.b_block_3(x_cat_3)
|
|
x_cat_3 = self.b_concat_3(x_cat_3)
|
|
|
|
x_cat_4 = torch.cat([x_cat_3, x_fea4], dim=1)
|
|
|
|
x_cat_4 = self.b_block_4(x_cat_4)
|
|
x_cat_4 = self.b_concat_4(x_cat_4)
|
|
|
|
x_cat_4 = self.b_LR_conv(x_cat_4)
|
|
|
|
# short cut
|
|
x_cat_4 = x_cat_4 + x_b_fea
|
|
x_branch = self.b_module(x_cat_4)
|
|
|
|
# x_out_branch = self.conv_w(x_branch)
|
|
########
|
|
x_branch_d = x_branch
|
|
x_f_cat = torch.cat([x_branch_d, x], dim=1)
|
|
x_f_cat = self.f_block(x_f_cat)
|
|
x_out = self.f_concat(x_f_cat)
|
|
x_out = self.f_HR_conv0(x_out)
|
|
x_out = self.f_HR_conv1(x_out)
|
|
|
|
#########
|
|
# return x_out_branch, x_out, x_grad
|
|
return x_out
|