ComfyUI/comfy_extras/nodes_post_processing.py

218 lines
7.0 KiB
Python

import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import comfy.utils
class Blend:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image1": ("IMAGE",),
"image2": ("IMAGE",),
"blend_factor": ("FLOAT", {
"default": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01
}),
"blend_mode": (["normal", "multiply", "screen", "overlay", "soft_light"],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "blend_images"
CATEGORY = "image/postprocessing"
def blend_images(self, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
if image1.shape != image2.shape:
image2 = image2.permute(0, 3, 1, 2)
image2 = comfy.utils.common_upscale(image2, image1.shape[2], image1.shape[1], upscale_method='bicubic', crop='center')
image2 = image2.permute(0, 2, 3, 1)
blended_image = self.blend_mode(image1, image2, blend_mode)
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
blended_image = torch.clamp(blended_image, 0, 1)
return (blended_image,)
def blend_mode(self, img1, img2, mode):
if mode == "normal":
return img2
elif mode == "multiply":
return img1 * img2
elif mode == "screen":
return 1 - (1 - img1) * (1 - img2)
elif mode == "overlay":
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
elif mode == "soft_light":
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (self.g(img1) - img1))
else:
raise ValueError(f"Unsupported blend mode: {mode}")
def g(self, x):
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
def gaussian_kernel(kernel_size: int, sigma: float):
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size), torch.linspace(-1, 1, kernel_size), indexing="ij")
d = torch.sqrt(x * x + y * y)
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
return g / g.sum()
class Blur:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"blur_radius": ("INT", {
"default": 1,
"min": 1,
"max": 31,
"step": 1
}),
"sigma": ("FLOAT", {
"default": 1.0,
"min": 0.1,
"max": 10.0,
"step": 0.1
}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "blur"
CATEGORY = "image/postprocessing"
def blur(self, image: torch.Tensor, blur_radius: int, sigma: float):
if blur_radius == 0:
return (image,)
batch_size, height, width, channels = image.shape
kernel_size = blur_radius * 2 + 1
kernel = gaussian_kernel(kernel_size, sigma).repeat(channels, 1, 1).unsqueeze(1)
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), 'reflect')
blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
blurred = blurred.permute(0, 2, 3, 1)
return (blurred,)
class Quantize:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"colors": ("INT", {
"default": 256,
"min": 1,
"max": 256,
"step": 1
}),
"dither": (["none", "floyd-steinberg"],),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "quantize"
CATEGORY = "image/postprocessing"
def quantize(self, image: torch.Tensor, colors: int = 256, dither: str = "FLOYDSTEINBERG"):
batch_size, height, width, _ = image.shape
result = torch.zeros_like(image)
dither_option = Image.Dither.FLOYDSTEINBERG if dither == "floyd-steinberg" else Image.Dither.NONE
for b in range(batch_size):
tensor_image = image[b]
img = (tensor_image * 255).to(torch.uint8).numpy()
pil_image = Image.fromarray(img, mode='RGB')
palette = pil_image.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
quantized_image = pil_image.quantize(colors=colors, palette=palette, dither=dither_option)
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
result[b] = quantized_array
return (result,)
class Sharpen:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": ("IMAGE",),
"sharpen_radius": ("INT", {
"default": 1,
"min": 1,
"max": 31,
"step": 1
}),
"sigma": ("FLOAT", {
"default": 1.0,
"min": 0.1,
"max": 10.0,
"step": 0.1
}),
"alpha": ("FLOAT", {
"default": 1.0,
"min": 0.0,
"max": 5.0,
"step": 0.1
}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "sharpen"
CATEGORY = "image/postprocessing"
def sharpen(self, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float):
if sharpen_radius == 0:
return (image,)
batch_size, height, width, channels = image.shape
kernel_size = sharpen_radius * 2 + 1
kernel = gaussian_kernel(kernel_size, sigma) * -(alpha*10)
center = kernel_size // 2
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), 'reflect')
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
sharpened = sharpened.permute(0, 2, 3, 1)
result = torch.clamp(sharpened, 0, 1)
return (result,)
NODE_CLASS_MAPPINGS = {
"ImageBlend": Blend,
"ImageBlur": Blur,
"ImageQuantize": Quantize,
"ImageSharpen": Sharpen,
}