49 lines
1.3 KiB
Python
49 lines
1.3 KiB
Python
import torch
|
|
from contextlib import contextmanager
|
|
|
|
class Linear(torch.nn.Linear):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
class Conv2d(torch.nn.Conv2d):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
class Conv3d(torch.nn.Conv3d):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
class GroupNorm(torch.nn.GroupNorm):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
class LayerNorm(torch.nn.LayerNorm):
|
|
def reset_parameters(self):
|
|
return None
|
|
|
|
def conv_nd(dims, *args, **kwargs):
|
|
if dims == 2:
|
|
return Conv2d(*args, **kwargs)
|
|
elif dims == 3:
|
|
return Conv3d(*args, **kwargs)
|
|
else:
|
|
raise ValueError(f"unsupported dimensions: {dims}")
|
|
|
|
@contextmanager
|
|
def use_comfy_ops(device=None, dtype=None): # Kind of an ugly hack but I can't think of a better way
|
|
old_torch_nn_linear = torch.nn.Linear
|
|
force_device = device
|
|
force_dtype = dtype
|
|
def linear_with_dtype(in_features: int, out_features: int, bias: bool = True, device=None, dtype=None):
|
|
if force_device is not None:
|
|
device = force_device
|
|
if force_dtype is not None:
|
|
dtype = force_dtype
|
|
return Linear(in_features, out_features, bias=bias, device=device, dtype=dtype)
|
|
|
|
torch.nn.Linear = linear_with_dtype
|
|
try:
|
|
yield
|
|
finally:
|
|
torch.nn.Linear = old_torch_nn_linear
|