525 lines
24 KiB
Python
525 lines
24 KiB
Python
from io import BytesIO
|
|
import numpy
|
|
from PIL import Image
|
|
import pytest
|
|
from pytest import fixture
|
|
import time
|
|
import torch
|
|
from typing import Union, Dict
|
|
import json
|
|
import subprocess
|
|
import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client)
|
|
import uuid
|
|
import urllib.request
|
|
import urllib.parse
|
|
import urllib.error
|
|
from comfy_execution.graph_utils import GraphBuilder, Node
|
|
|
|
class RunResult:
|
|
def __init__(self, prompt_id: str):
|
|
self.outputs: Dict[str,Dict] = {}
|
|
self.runs: Dict[str,bool] = {}
|
|
self.prompt_id: str = prompt_id
|
|
|
|
def get_output(self, node: Node):
|
|
return self.outputs.get(node.id, None)
|
|
|
|
def did_run(self, node: Node):
|
|
return self.runs.get(node.id, False)
|
|
|
|
def get_images(self, node: Node):
|
|
output = self.get_output(node)
|
|
if output is None:
|
|
return []
|
|
return output.get('image_objects', [])
|
|
|
|
def get_prompt_id(self):
|
|
return self.prompt_id
|
|
|
|
class ComfyClient:
|
|
def __init__(self):
|
|
self.test_name = ""
|
|
|
|
def connect(self,
|
|
listen:str = '127.0.0.1',
|
|
port:Union[str,int] = 8188,
|
|
client_id: str = str(uuid.uuid4())
|
|
):
|
|
self.client_id = client_id
|
|
self.server_address = f"{listen}:{port}"
|
|
ws = websocket.WebSocket()
|
|
ws.connect("ws://{}/ws?clientId={}".format(self.server_address, self.client_id))
|
|
self.ws = ws
|
|
|
|
def queue_prompt(self, prompt):
|
|
p = {"prompt": prompt, "client_id": self.client_id}
|
|
data = json.dumps(p).encode('utf-8')
|
|
req = urllib.request.Request("http://{}/prompt".format(self.server_address), data=data)
|
|
return json.loads(urllib.request.urlopen(req).read())
|
|
|
|
def get_image(self, filename, subfolder, folder_type):
|
|
data = {"filename": filename, "subfolder": subfolder, "type": folder_type}
|
|
url_values = urllib.parse.urlencode(data)
|
|
with urllib.request.urlopen("http://{}/view?{}".format(self.server_address, url_values)) as response:
|
|
return response.read()
|
|
|
|
def get_history(self, prompt_id):
|
|
with urllib.request.urlopen("http://{}/history/{}".format(self.server_address, prompt_id)) as response:
|
|
return json.loads(response.read())
|
|
|
|
def set_test_name(self, name):
|
|
self.test_name = name
|
|
|
|
def run(self, graph):
|
|
prompt = graph.finalize()
|
|
for node in graph.nodes.values():
|
|
if node.class_type == 'SaveImage':
|
|
node.inputs['filename_prefix'] = self.test_name
|
|
|
|
prompt_id = self.queue_prompt(prompt)['prompt_id']
|
|
result = RunResult(prompt_id)
|
|
while True:
|
|
out = self.ws.recv()
|
|
if isinstance(out, str):
|
|
message = json.loads(out)
|
|
if message['type'] == 'executing':
|
|
data = message['data']
|
|
if data['prompt_id'] != prompt_id:
|
|
continue
|
|
if data['node'] is None:
|
|
break
|
|
result.runs[data['node']] = True
|
|
elif message['type'] == 'execution_error':
|
|
raise Exception(message['data'])
|
|
elif message['type'] == 'execution_cached':
|
|
pass # Probably want to store this off for testing
|
|
|
|
history = self.get_history(prompt_id)[prompt_id]
|
|
for node_id in history['outputs']:
|
|
node_output = history['outputs'][node_id]
|
|
result.outputs[node_id] = node_output
|
|
images_output = []
|
|
if 'images' in node_output:
|
|
for image in node_output['images']:
|
|
image_data = self.get_image(image['filename'], image['subfolder'], image['type'])
|
|
image_obj = Image.open(BytesIO(image_data))
|
|
images_output.append(image_obj)
|
|
node_output['image_objects'] = images_output
|
|
|
|
return result
|
|
|
|
#
|
|
# Loop through these variables
|
|
#
|
|
@pytest.mark.execution
|
|
class TestExecution:
|
|
#
|
|
# Initialize server and client
|
|
#
|
|
@fixture(scope="class", autouse=True, params=[
|
|
# (use_lru, lru_size)
|
|
(False, 0),
|
|
(True, 0),
|
|
(True, 100),
|
|
])
|
|
def _server(self, args_pytest, request):
|
|
# Start server
|
|
pargs = [
|
|
'python','main.py',
|
|
'--output-directory', args_pytest["output_dir"],
|
|
'--listen', args_pytest["listen"],
|
|
'--port', str(args_pytest["port"]),
|
|
'--extra-model-paths-config', 'tests/inference/extra_model_paths.yaml',
|
|
]
|
|
use_lru, lru_size = request.param
|
|
if use_lru:
|
|
pargs += ['--cache-lru', str(lru_size)]
|
|
print("Running server with args:", pargs)
|
|
p = subprocess.Popen(pargs)
|
|
yield
|
|
p.kill()
|
|
torch.cuda.empty_cache()
|
|
|
|
def start_client(self, listen:str, port:int):
|
|
# Start client
|
|
comfy_client = ComfyClient()
|
|
# Connect to server (with retries)
|
|
n_tries = 5
|
|
for i in range(n_tries):
|
|
time.sleep(4)
|
|
try:
|
|
comfy_client.connect(listen=listen, port=port)
|
|
except ConnectionRefusedError as e:
|
|
print(e)
|
|
print(f"({i+1}/{n_tries}) Retrying...")
|
|
else:
|
|
break
|
|
return comfy_client
|
|
|
|
@fixture(scope="class", autouse=True)
|
|
def shared_client(self, args_pytest, _server):
|
|
client = self.start_client(args_pytest["listen"], args_pytest["port"])
|
|
yield client
|
|
del client
|
|
torch.cuda.empty_cache()
|
|
|
|
@fixture
|
|
def client(self, shared_client, request):
|
|
shared_client.set_test_name(f"execution[{request.node.name}]")
|
|
yield shared_client
|
|
|
|
@fixture
|
|
def builder(self, request):
|
|
yield GraphBuilder(prefix=request.node.name)
|
|
|
|
def test_lazy_input(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
mask = g.node("StubMask", value=0.0, height=512, width=512, batch_size=1)
|
|
|
|
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
output = g.node("SaveImage", images=lazy_mix.out(0))
|
|
result = client.run(g)
|
|
|
|
result_image = result.get_images(output)[0]
|
|
assert numpy.array(result_image).any() == 0, "Image should be black"
|
|
assert result.did_run(input1)
|
|
assert not result.did_run(input2)
|
|
assert result.did_run(mask)
|
|
assert result.did_run(lazy_mix)
|
|
|
|
def test_full_cache(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1)
|
|
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
|
|
|
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
g.node("SaveImage", images=lazy_mix.out(0))
|
|
|
|
client.run(g)
|
|
result2 = client.run(g)
|
|
for node_id, node in g.nodes.items():
|
|
assert not result2.did_run(node), f"Node {node_id} ran, but should have been cached"
|
|
|
|
def test_partial_cache(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="NOISE", height=512, width=512, batch_size=1)
|
|
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
|
|
|
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
g.node("SaveImage", images=lazy_mix.out(0))
|
|
|
|
client.run(g)
|
|
mask.inputs['value'] = 0.4
|
|
result2 = client.run(g)
|
|
assert not result2.did_run(input1), "Input1 should have been cached"
|
|
assert not result2.did_run(input2), "Input2 should have been cached"
|
|
|
|
def test_error(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
# Different size of the two images
|
|
input2 = g.node("StubImage", content="NOISE", height=256, width=256, batch_size=1)
|
|
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
|
|
|
lazy_mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
g.node("SaveImage", images=lazy_mix.out(0))
|
|
|
|
try:
|
|
client.run(g)
|
|
assert False, "Should have raised an error"
|
|
except Exception as e:
|
|
assert 'prompt_id' in e.args[0], f"Did not get back a proper error message: {e}"
|
|
|
|
@pytest.mark.parametrize("test_value, expect_error", [
|
|
(5, True),
|
|
("foo", True),
|
|
(5.0, False),
|
|
])
|
|
def test_validation_error_literal(self, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
validation1 = g.node("TestCustomValidation1", input1=test_value, input2=3.0)
|
|
g.node("SaveImage", images=validation1.out(0))
|
|
|
|
if expect_error:
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
else:
|
|
client.run(g)
|
|
|
|
@pytest.mark.parametrize("test_type, test_value", [
|
|
("StubInt", 5),
|
|
("StubFloat", 5.0)
|
|
])
|
|
def test_validation_error_edge1(self, test_type, test_value, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
stub = g.node(test_type, value=test_value)
|
|
validation1 = g.node("TestCustomValidation1", input1=stub.out(0), input2=3.0)
|
|
g.node("SaveImage", images=validation1.out(0))
|
|
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
|
|
@pytest.mark.parametrize("test_type, test_value, expect_error", [
|
|
("StubInt", 5, True),
|
|
("StubFloat", 5.0, False)
|
|
])
|
|
def test_validation_error_edge2(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
stub = g.node(test_type, value=test_value)
|
|
validation2 = g.node("TestCustomValidation2", input1=stub.out(0), input2=3.0)
|
|
g.node("SaveImage", images=validation2.out(0))
|
|
|
|
if expect_error:
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
else:
|
|
client.run(g)
|
|
|
|
@pytest.mark.parametrize("test_type, test_value, expect_error", [
|
|
("StubInt", 5, True),
|
|
("StubFloat", 5.0, False)
|
|
])
|
|
def test_validation_error_edge3(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
stub = g.node(test_type, value=test_value)
|
|
validation3 = g.node("TestCustomValidation3", input1=stub.out(0), input2=3.0)
|
|
g.node("SaveImage", images=validation3.out(0))
|
|
|
|
if expect_error:
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
else:
|
|
client.run(g)
|
|
|
|
@pytest.mark.parametrize("test_type, test_value, expect_error", [
|
|
("StubInt", 5, True),
|
|
("StubFloat", 5.0, False)
|
|
])
|
|
def test_validation_error_edge4(self, test_type, test_value, expect_error, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
stub = g.node(test_type, value=test_value)
|
|
validation4 = g.node("TestCustomValidation4", input1=stub.out(0), input2=3.0)
|
|
g.node("SaveImage", images=validation4.out(0))
|
|
|
|
if expect_error:
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
else:
|
|
client.run(g)
|
|
|
|
@pytest.mark.parametrize("test_value1, test_value2, expect_error", [
|
|
(0.0, 0.5, False),
|
|
(0.0, 5.0, False),
|
|
(0.0, 7.0, True)
|
|
])
|
|
def test_validation_error_kwargs(self, test_value1, test_value2, expect_error, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
validation5 = g.node("TestCustomValidation5", input1=test_value1, input2=test_value2)
|
|
g.node("SaveImage", images=validation5.out(0))
|
|
|
|
if expect_error:
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
else:
|
|
client.run(g)
|
|
|
|
def test_cycle_error(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
|
|
|
lazy_mix1 = g.node("TestLazyMixImages", image1=input1.out(0), mask=mask.out(0))
|
|
lazy_mix2 = g.node("TestLazyMixImages", image1=lazy_mix1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
g.node("SaveImage", images=lazy_mix2.out(0))
|
|
|
|
# When the cycle exists on initial submission, it should raise a validation error
|
|
with pytest.raises(urllib.error.HTTPError):
|
|
client.run(g)
|
|
|
|
def test_dynamic_cycle_error(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
generator = g.node("TestDynamicDependencyCycle", input1=input1.out(0), input2=input2.out(0))
|
|
g.node("SaveImage", images=generator.out(0))
|
|
|
|
# When the cycle is in a graph that is generated dynamically, it should raise a runtime error
|
|
try:
|
|
client.run(g)
|
|
assert False, "Should have raised an error"
|
|
except Exception as e:
|
|
assert 'prompt_id' in e.args[0], f"Did not get back a proper error message: {e}"
|
|
assert e.args[0]['node_id'] == generator.id, "Error should have been on the generator node"
|
|
|
|
def test_missing_node_error(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", id="removeme", content="WHITE", height=512, width=512, batch_size=1)
|
|
input3 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
mask = g.node("StubMask", value=0.5, height=512, width=512, batch_size=1)
|
|
mix1 = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
mix2 = g.node("TestLazyMixImages", image1=input1.out(0), image2=input3.out(0), mask=mask.out(0))
|
|
# We have multiple outputs. The first is invalid, but the second is valid
|
|
g.node("SaveImage", images=mix1.out(0))
|
|
g.node("SaveImage", images=mix2.out(0))
|
|
g.remove_node("removeme")
|
|
|
|
client.run(g)
|
|
|
|
# Add back in the missing node to make sure the error doesn't break the server
|
|
input2 = g.node("StubImage", id="removeme", content="WHITE", height=512, width=512, batch_size=1)
|
|
client.run(g)
|
|
|
|
def test_custom_is_changed(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
# Creating the nodes in this specific order previously caused a bug
|
|
save = g.node("SaveImage")
|
|
is_changed = g.node("TestCustomIsChanged", should_change=False)
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
|
|
save.set_input('images', is_changed.out(0))
|
|
is_changed.set_input('image', input1.out(0))
|
|
|
|
result1 = client.run(g)
|
|
result2 = client.run(g)
|
|
is_changed.set_input('should_change', True)
|
|
result3 = client.run(g)
|
|
result4 = client.run(g)
|
|
assert result1.did_run(is_changed), "is_changed should have been run"
|
|
assert not result2.did_run(is_changed), "is_changed should have been cached"
|
|
assert result3.did_run(is_changed), "is_changed should have been re-run"
|
|
assert result4.did_run(is_changed), "is_changed should not have been cached"
|
|
|
|
def test_undeclared_inputs(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
input3 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input4 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
average = g.node("TestVariadicAverage", input1=input1.out(0), input2=input2.out(0), input3=input3.out(0), input4=input4.out(0))
|
|
output = g.node("SaveImage", images=average.out(0))
|
|
|
|
result = client.run(g)
|
|
result_image = result.get_images(output)[0]
|
|
expected = 255 // 4
|
|
assert numpy.array(result_image).min() == expected and numpy.array(result_image).max() == expected, "Image should be grey"
|
|
|
|
def test_for_loop(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
iterations = 4
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
is_changed = g.node("TestCustomIsChanged", should_change=True, image=input2.out(0))
|
|
for_open = g.node("TestForLoopOpen", remaining=iterations, initial_value1=is_changed.out(0))
|
|
average = g.node("TestVariadicAverage", input1=input1.out(0), input2=for_open.out(2))
|
|
for_close = g.node("TestForLoopClose", flow_control=for_open.out(0), initial_value1=average.out(0))
|
|
output = g.node("SaveImage", images=for_close.out(0))
|
|
|
|
for iterations in range(1, 5):
|
|
for_open.set_input('remaining', iterations)
|
|
result = client.run(g)
|
|
result_image = result.get_images(output)[0]
|
|
expected = 255 // (2 ** iterations)
|
|
assert numpy.array(result_image).min() == expected and numpy.array(result_image).max() == expected, "Image should be grey"
|
|
assert result.did_run(is_changed)
|
|
|
|
def test_mixed_expansion_returns(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
val_list = g.node("TestMakeListNode", value1=0.1, value2=0.2, value3=0.3)
|
|
mixed = g.node("TestMixedExpansionReturns", input1=val_list.out(0))
|
|
output_dynamic = g.node("SaveImage", images=mixed.out(0))
|
|
output_literal = g.node("SaveImage", images=mixed.out(1))
|
|
|
|
result = client.run(g)
|
|
images_dynamic = result.get_images(output_dynamic)
|
|
assert len(images_dynamic) == 3, "Should have 2 images"
|
|
assert numpy.array(images_dynamic[0]).min() == 25 and numpy.array(images_dynamic[0]).max() == 25, "First image should be 0.1"
|
|
assert numpy.array(images_dynamic[1]).min() == 51 and numpy.array(images_dynamic[1]).max() == 51, "Second image should be 0.2"
|
|
assert numpy.array(images_dynamic[2]).min() == 76 and numpy.array(images_dynamic[2]).max() == 76, "Third image should be 0.3"
|
|
|
|
images_literal = result.get_images(output_literal)
|
|
assert len(images_literal) == 3, "Should have 2 images"
|
|
for i in range(3):
|
|
assert numpy.array(images_literal[i]).min() == 255 and numpy.array(images_literal[i]).max() == 255, "All images should be white"
|
|
|
|
def test_mixed_lazy_results(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
val_list = g.node("TestMakeListNode", value1=0.0, value2=0.5, value3=1.0)
|
|
mask = g.node("StubMask", value=val_list.out(0), height=512, width=512, batch_size=1)
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
input2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
mix = g.node("TestLazyMixImages", image1=input1.out(0), image2=input2.out(0), mask=mask.out(0))
|
|
rebatch = g.node("RebatchImages", images=mix.out(0), batch_size=3)
|
|
output = g.node("SaveImage", images=rebatch.out(0))
|
|
|
|
result = client.run(g)
|
|
images = result.get_images(output)
|
|
assert len(images) == 3, "Should have 3 image"
|
|
assert numpy.array(images[0]).min() == 0 and numpy.array(images[0]).max() == 0, "First image should be 0.0"
|
|
assert numpy.array(images[1]).min() == 127 and numpy.array(images[1]).max() == 127, "Second image should be 0.5"
|
|
assert numpy.array(images[2]).min() == 255 and numpy.array(images[2]).max() == 255, "Third image should be 1.0"
|
|
|
|
def test_output_reuse(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
|
|
output1 = g.node("SaveImage", images=input1.out(0))
|
|
output2 = g.node("SaveImage", images=input1.out(0))
|
|
|
|
result = client.run(g)
|
|
images1 = result.get_images(output1)
|
|
images2 = result.get_images(output2)
|
|
assert len(images1) == 1, "Should have 1 image"
|
|
assert len(images2) == 1, "Should have 1 image"
|
|
|
|
|
|
# This tests that only constant outputs are used in the call to `IS_CHANGED`
|
|
def test_is_changed_with_outputs(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
input1 = g.node("StubConstantImage", value=0.5, height=512, width=512, batch_size=1)
|
|
test_node = g.node("TestIsChangedWithConstants", image=input1.out(0), value=0.5)
|
|
|
|
output = g.node("PreviewImage", images=test_node.out(0))
|
|
|
|
result = client.run(g)
|
|
images = result.get_images(output)
|
|
assert len(images) == 1, "Should have 1 image"
|
|
assert numpy.array(images[0]).min() == 63 and numpy.array(images[0]).max() == 63, "Image should have value 0.25"
|
|
|
|
result = client.run(g)
|
|
images = result.get_images(output)
|
|
assert len(images) == 1, "Should have 1 image"
|
|
assert numpy.array(images[0]).min() == 63 and numpy.array(images[0]).max() == 63, "Image should have value 0.25"
|
|
assert not result.did_run(test_node), "The execution should have been cached"
|
|
|
|
# This tests that nodes with OUTPUT_IS_LIST function correctly when they receive an ExecutionBlocker
|
|
# as input. We also test that when that list (containing an ExecutionBlocker) is passed to a node,
|
|
# only that one entry in the list is blocked.
|
|
def test_execution_block_list_output(self, client: ComfyClient, builder: GraphBuilder):
|
|
g = builder
|
|
image1 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
image2 = g.node("StubImage", content="WHITE", height=512, width=512, batch_size=1)
|
|
image3 = g.node("StubImage", content="BLACK", height=512, width=512, batch_size=1)
|
|
image_list = g.node("TestMakeListNode", value1=image1.out(0), value2=image2.out(0), value3=image3.out(0))
|
|
int1 = g.node("StubInt", value=1)
|
|
int2 = g.node("StubInt", value=2)
|
|
int3 = g.node("StubInt", value=3)
|
|
int_list = g.node("TestMakeListNode", value1=int1.out(0), value2=int2.out(0), value3=int3.out(0))
|
|
compare = g.node("TestIntConditions", a=int_list.out(0), b=2, operation="==")
|
|
blocker = g.node("TestExecutionBlocker", input=image_list.out(0), block=compare.out(0), verbose=False)
|
|
|
|
list_output = g.node("TestMakeListNode", value1=blocker.out(0))
|
|
output = g.node("PreviewImage", images=list_output.out(0))
|
|
|
|
result = client.run(g)
|
|
assert result.did_run(output), "The execution should have run"
|
|
images = result.get_images(output)
|
|
assert len(images) == 2, "Should have 2 images"
|
|
assert numpy.array(images[0]).min() == 0 and numpy.array(images[0]).max() == 0, "First image should be black"
|
|
assert numpy.array(images[1]).min() == 0 and numpy.array(images[1]).max() == 0, "Second image should also be black"
|