ComfyUI/tests/compare/test_quality.py

195 lines
7.8 KiB
Python

import datetime
import numpy as np
import os
from PIL import Image
import pytest
from pytest import fixture
from typing import Tuple, List
from cv2 import imread, cvtColor, COLOR_BGR2RGB
from skimage.metrics import structural_similarity as ssim
"""
This test suite compares images in 2 directories by file name
The directories are specified by the command line arguments --baseline_dir and --test_dir
"""
# ssim: Structural Similarity Index
# Returns a tuple of (ssim, diff_image)
def ssim_score(img0: np.ndarray, img1: np.ndarray) -> Tuple[float, np.ndarray]:
score, diff = ssim(img0, img1, channel_axis=-1, full=True)
# rescale the difference image to 0-255 range
diff = (diff * 255).astype("uint8")
return score, diff
# Metrics must return a tuple of (score, diff_image)
METRICS = {"ssim": ssim_score}
METRICS_PASS_THRESHOLD = {"ssim": 0.95}
class TestCompareImageMetrics:
@fixture(scope="class")
def test_file_names(self, args_pytest):
test_dir = args_pytest['test_dir']
fnames = self.gather_file_basenames(test_dir)
yield fnames
del fnames
@fixture(scope="class", autouse=True)
def teardown(self, args_pytest):
yield
# Runs after all tests are complete
# Aggregate output files into a grid of images
baseline_dir = args_pytest['baseline_dir']
test_dir = args_pytest['test_dir']
img_output_dir = args_pytest['img_output_dir']
metrics_file = args_pytest['metrics_file']
grid_dir = os.path.join(img_output_dir, "grid")
os.makedirs(grid_dir, exist_ok=True)
for metric_dir in METRICS.keys():
metric_path = os.path.join(img_output_dir, metric_dir)
for file in os.listdir(metric_path):
if file.endswith(".png"):
score = self.lookup_score_from_fname(file, metrics_file)
image_file_list = []
image_file_list.append([
os.path.join(baseline_dir, file),
os.path.join(test_dir, file),
os.path.join(metric_path, file)
])
# Create grid
image_list = [[Image.open(file) for file in files] for files in image_file_list]
grid = self.image_grid(image_list)
grid.save(os.path.join(grid_dir, f"{metric_dir}_{score:.3f}_{file}"))
# Tests run for each baseline file name
@fixture()
def fname(self, baseline_fname):
yield baseline_fname
del baseline_fname
def test_directories_not_empty(self, args_pytest):
baseline_dir = args_pytest['baseline_dir']
test_dir = args_pytest['test_dir']
assert len(os.listdir(baseline_dir)) != 0, f"Baseline directory {baseline_dir} is empty"
assert len(os.listdir(test_dir)) != 0, f"Test directory {test_dir} is empty"
def test_dir_has_all_matching_metadata(self, fname, test_file_names, args_pytest):
# Check that all files in baseline_dir have a file in test_dir with matching metadata
baseline_file_path = os.path.join(args_pytest['baseline_dir'], fname)
file_paths = [os.path.join(args_pytest['test_dir'], f) for f in test_file_names]
file_match = self.find_file_match(baseline_file_path, file_paths)
assert file_match is not None, f"Could not find a file in {args_pytest['test_dir']} with matching metadata to {baseline_file_path}"
# For a baseline image file, finds the corresponding file name in test_dir and
# compares the images using the metrics in METRICS
@pytest.mark.parametrize("metric", METRICS.keys())
def test_pipeline_compare(
self,
args_pytest,
fname,
test_file_names,
metric,
):
baseline_dir = args_pytest['baseline_dir']
test_dir = args_pytest['test_dir']
metrics_output_file = args_pytest['metrics_file']
img_output_dir = args_pytest['img_output_dir']
baseline_file_path = os.path.join(baseline_dir, fname)
# Find file match
file_paths = [os.path.join(test_dir, f) for f in test_file_names]
test_file = self.find_file_match(baseline_file_path, file_paths)
# Run metrics
sample_baseline = self.read_img(baseline_file_path)
sample_secondary = self.read_img(test_file)
score, metric_img = METRICS[metric](sample_baseline, sample_secondary)
metric_status = score > METRICS_PASS_THRESHOLD[metric]
# Save metric values
with open(metrics_output_file, 'a') as f:
run_info = os.path.splitext(fname)[0]
metric_status_str = "PASS ✅" if metric_status else "FAIL ❌"
date_str = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
f.write(f"| {date_str} | {run_info} | {metric} | {metric_status_str} | {score} | \n")
# Save metric image
metric_img_dir = os.path.join(img_output_dir, metric)
os.makedirs(metric_img_dir, exist_ok=True)
output_filename = f'{fname}'
Image.fromarray(metric_img).save(os.path.join(metric_img_dir, output_filename))
assert score > METRICS_PASS_THRESHOLD[metric]
def read_img(self, filename: str) -> np.ndarray:
cvImg = imread(filename)
cvImg = cvtColor(cvImg, COLOR_BGR2RGB)
return cvImg
def image_grid(self, img_list: list[list[Image.Image]]):
# imgs is a 2D list of images
# Assumes the input images are a rectangular grid of equal sized images
rows = len(img_list)
cols = len(img_list[0])
w, h = img_list[0][0].size
grid = Image.new('RGB', size=(cols*w, rows*h))
for i, row in enumerate(img_list):
for j, img in enumerate(row):
grid.paste(img, box=(j*w, i*h))
return grid
def lookup_score_from_fname(self,
fname: str,
metrics_output_file: str
) -> float:
fname_basestr = os.path.splitext(fname)[0]
with open(metrics_output_file, 'r') as f:
for line in f:
if fname_basestr in line:
score = float(line.split('|')[5])
return score
raise ValueError(f"Could not find score for {fname} in {metrics_output_file}")
def gather_file_basenames(self, directory: str):
files = []
for file in os.listdir(directory):
if file.endswith(".png"):
files.append(file)
return files
def read_file_prompt(self, fname:str) -> str:
# Read prompt from image file metadata
img = Image.open(fname)
img.load()
return img.info['prompt']
def find_file_match(self, baseline_file: str, file_paths: List[str]):
# Find a file in file_paths with matching metadata to baseline_file
baseline_prompt = self.read_file_prompt(baseline_file)
# Do not match empty prompts
if baseline_prompt is None or baseline_prompt == "":
return None
# Find file match
# Reorder test_file_names so that the file with matching name is first
# This is an optimization because matching file names are more likely
# to have matching metadata if they were generated with the same script
basename = os.path.basename(baseline_file)
file_path_basenames = [os.path.basename(f) for f in file_paths]
if basename in file_path_basenames:
match_index = file_path_basenames.index(basename)
file_paths.insert(0, file_paths.pop(match_index))
for f in file_paths:
test_file_prompt = self.read_file_prompt(f)
if baseline_prompt == test_file_prompt:
return f