import torch import comfy.utils class PatchModelAddDownscale: upscale_methods = ["bicubic", "nearest-exact", "bilinear", "area", "bislerp"] @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "block_number": ("INT", {"default": 3, "min": 1, "max": 32, "step": 1}), "downscale_factor": ("FLOAT", {"default": 2.0, "min": 0.1, "max": 9.0, "step": 0.001}), "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}), "end_percent": ("FLOAT", {"default": 0.35, "min": 0.0, "max": 1.0, "step": 0.001}), "downscale_after_skip": ("BOOLEAN", {"default": True}), "downscale_method": (s.upscale_methods,), "upscale_method": (s.upscale_methods,), }} RETURN_TYPES = ("MODEL",) FUNCTION = "patch" CATEGORY = "model_patches/unet" def patch(self, model, block_number, downscale_factor, start_percent, end_percent, downscale_after_skip, downscale_method, upscale_method): model_sampling = model.get_model_object("model_sampling") sigma_start = model_sampling.percent_to_sigma(start_percent) sigma_end = model_sampling.percent_to_sigma(end_percent) def input_block_patch(h, transformer_options): if transformer_options["block"][1] == block_number: sigma = transformer_options["sigmas"][0].item() if sigma <= sigma_start and sigma >= sigma_end: h = comfy.utils.common_upscale(h, round(h.shape[-1] * (1.0 / downscale_factor)), round(h.shape[-2] * (1.0 / downscale_factor)), downscale_method, "disabled") return h def output_block_patch(h, hsp, transformer_options): if h.shape[2] != hsp.shape[2]: h = comfy.utils.common_upscale(h, hsp.shape[-1], hsp.shape[-2], upscale_method, "disabled") return h, hsp m = model.clone() if downscale_after_skip: m.set_model_input_block_patch_after_skip(input_block_patch) else: m.set_model_input_block_patch(input_block_patch) m.set_model_output_block_patch(output_block_patch) return (m, ) NODE_CLASS_MAPPINGS = { "PatchModelAddDownscale": PatchModelAddDownscale, } NODE_DISPLAY_NAME_MAPPINGS = { # Sampling "PatchModelAddDownscale": "PatchModelAddDownscale (Kohya Deep Shrink)", }