import os import torch class SPieceTokenizer: add_eos = True @staticmethod def from_pretrained(path): return SPieceTokenizer(path) def __init__(self, tokenizer_path): import sentencepiece if torch.is_tensor(tokenizer_path): tokenizer_path = tokenizer_path.numpy().tobytes() if isinstance(tokenizer_path, bytes): self.tokenizer = sentencepiece.SentencePieceProcessor(model_proto=tokenizer_path, add_eos=self.add_eos) else: self.tokenizer = sentencepiece.SentencePieceProcessor(model_file=tokenizer_path, add_eos=self.add_eos) def get_vocab(self): out = {} for i in range(self.tokenizer.get_piece_size()): out[self.tokenizer.id_to_piece(i)] = i return out def __call__(self, string): out = self.tokenizer.encode(string) return {"input_ids": out}