import k_diffusion.sampling import k_diffusion.external import torch import contextlib class CFGDenoiser(torch.nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, x, sigma, uncond, cond, cond_scale): if len(uncond[0]) == len(cond[0]) and x.shape[0] * x.shape[2] * x.shape[3] < (96 * 96): #TODO check memory instead x_in = torch.cat([x] * 2) sigma_in = torch.cat([sigma] * 2) cond_in = torch.cat([uncond, cond]) uncond, cond = self.inner_model(x_in, sigma_in, cond=cond_in).chunk(2) else: cond = self.inner_model(x, sigma, cond=cond) uncond = self.inner_model(x, sigma, cond=uncond) return uncond + (cond - uncond) * cond_scale class CFGDenoiserComplex(torch.nn.Module): def __init__(self, model): super().__init__() self.inner_model = model def forward(self, x, sigma, uncond, cond, cond_scale): def calc_cond(cond, x_in, sigma): out_cond = torch.zeros_like(x_in) out_count = torch.ones_like(x_in)/100000.0 sigma_cmp = sigma[0] for x in cond: area = (x_in.shape[2], x_in.shape[3], 0, 0) strength = 1.0 min_sigma = 0.0 max_sigma = 999.0 if 'area' in x[1]: area = x[1]['area'] if 'strength' in x[1]: strength = x[1]['strength'] if 'min_sigma' in x[1]: min_sigma = x[1]['min_sigma'] if 'max_sigma' in x[1]: max_sigma = x[1]['max_sigma'] if sigma_cmp < min_sigma or sigma_cmp > max_sigma: continue input_x = x_in[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] mult = torch.ones_like(input_x) * strength rr = 8 if area[2] != 0: for t in range(rr): mult[:,:,area[2]+t:area[2]+1+t,:] *= ((1.0/rr) * (t + 1)) if (area[0] + area[2]) < x_in.shape[2]: for t in range(rr): mult[:,:,area[0] + area[2] - 1 - t:area[0] + area[2] - t,:] *= ((1.0/rr) * (t + 1)) if area[3] != 0: for t in range(rr): mult[:,:,:,area[3]+t:area[3]+1+t] *= ((1.0/rr) * (t + 1)) if (area[1] + area[3]) < x_in.shape[3]: for t in range(rr): mult[:,:,:,area[1] + area[3] - 1 - t:area[1] + area[3] - t] *= ((1.0/rr) * (t + 1)) out_cond[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] += self.inner_model(input_x, sigma, cond=x[0]) * mult out_count[:,:,area[2]:area[0] + area[2],area[3]:area[1] + area[3]] += mult del input_x del mult out_cond /= out_count del out_count return out_cond cond = calc_cond(cond, x, sigma) uncond = calc_cond(uncond, x, sigma) return uncond + (cond - uncond) * cond_scale def simple_scheduler(model, steps): sigs = [] ss = len(model.sigmas) / steps for x in range(steps): sigs += [float(model.sigmas[-(1 + int(x * ss))])] sigs += [0.0] return torch.FloatTensor(sigs) def create_cond_with_same_area_if_none(conds, c): if 'area' not in c[1]: return c_area = c[1]['area'] smallest = None for x in conds: if 'area' in x[1]: a = x[1]['area'] if c_area[2] >= a[2] and c_area[3] >= a[3]: if a[0] + a[2] >= c_area[0] + c_area[2]: if a[1] + a[3] >= c_area[1] + c_area[3]: if smallest is None: smallest = x elif 'area' not in smallest[1]: smallest = x else: if smallest[1]['area'][0] * smallest[1]['area'][1] > a[0] * a[1]: smallest = x else: if smallest is None: smallest = x if smallest is None: return if 'area' in smallest[1]: if smallest[1]['area'] == c_area: return n = c[1].copy() conds += [[smallest[0], n]] class KSampler: SCHEDULERS = ["karras", "normal", "simple"] SAMPLERS = ["sample_euler", "sample_euler_ancestral", "sample_heun", "sample_dpm_2", "sample_dpm_2_ancestral", "sample_lms", "sample_dpm_fast", "sample_dpm_adaptive", "sample_dpmpp_2s_ancestral", "sample_dpmpp_sde", "sample_dpmpp_2m"] def __init__(self, model, steps, device, sampler=None, scheduler=None, denoise=None): self.model = model if self.model.parameterization == "v": self.model_wrap = k_diffusion.external.CompVisVDenoiser(self.model, quantize=True) else: self.model_wrap = k_diffusion.external.CompVisDenoiser(self.model, quantize=True) self.model_k = CFGDenoiserComplex(self.model_wrap) self.device = device if scheduler not in self.SCHEDULERS: scheduler = self.SCHEDULERS[0] if sampler not in self.SAMPLERS: sampler = self.SAMPLERS[0] self.scheduler = scheduler self.sampler = sampler self.sigma_min=float(self.model_wrap.sigmas[0]) self.sigma_max=float(self.model_wrap.sigmas[-1]) self.set_steps(steps, denoise) def _calculate_sigmas(self, steps): sigmas = None discard_penultimate_sigma = False if self.sampler in ['sample_dpm_2', 'sample_dpm_2_ancestral']: steps += 1 discard_penultimate_sigma = True if self.scheduler == "karras": sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=self.sigma_min, sigma_max=self.sigma_max, device=self.device) elif self.scheduler == "normal": sigmas = self.model_wrap.get_sigmas(steps).to(self.device) elif self.scheduler == "simple": sigmas = simple_scheduler(self.model_wrap, steps).to(self.device) else: print("error invalid scheduler", self.scheduler) if discard_penultimate_sigma: sigmas = torch.cat([sigmas[:-2], sigmas[-1:]]) return sigmas def set_steps(self, steps, denoise=None): self.steps = steps if denoise is None: self.sigmas = self._calculate_sigmas(steps) else: new_steps = int(steps/denoise) sigmas = self._calculate_sigmas(new_steps) self.sigmas = sigmas[-(steps + 1):] def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None): sigmas = self.sigmas sigma_min = self.sigma_min if last_step is not None: sigma_min = sigmas[last_step] sigmas = sigmas[:last_step + 1] if start_step is not None: sigmas = sigmas[start_step:] noise *= sigmas[0] if latent_image is not None: noise += latent_image positive = positive[:] negative = negative[:] #make sure each cond area has an opposite one with the same area for c in positive: create_cond_with_same_area_if_none(negative, c) for c in negative: create_cond_with_same_area_if_none(positive, c) if self.model.model.diffusion_model.dtype == torch.float16: precision_scope = torch.autocast else: precision_scope = contextlib.nullcontext with precision_scope(self.device): if self.sampler == "sample_dpm_fast": samples = k_diffusion.sampling.sample_dpm_fast(self.model_k, noise, sigma_min, sigmas[0], self.steps, extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg}) elif self.sampler == "sample_dpm_adaptive": samples = k_diffusion.sampling.sample_dpm_adaptive(self.model_k, noise, sigma_min, sigmas[0], extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg}) else: samples = getattr(k_diffusion.sampling, self.sampler)(self.model_k, noise, sigmas, extra_args={"cond":positive, "uncond":negative, "cond_scale": cfg}) return samples.to(torch.float32)