#Original code can be found on: https://github.com/black-forest-labs/flux from dataclasses import dataclass import torch from torch import Tensor, nn from .layers import ( DoubleStreamBlock, EmbedND, LastLayer, MLPEmbedder, SingleStreamBlock, timestep_embedding, ) from einops import rearrange, repeat import comfy.ldm.common_dit @dataclass class FluxParams: in_channels: int vec_in_dim: int context_in_dim: int hidden_size: int mlp_ratio: float num_heads: int depth: int depth_single_blocks: int axes_dim: list theta: int qkv_bias: bool guidance_embed: bool class Flux(nn.Module): """ Transformer model for flow matching on sequences. """ def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs): super().__init__() self.dtype = dtype params = FluxParams(**kwargs) self.params = params self.in_channels = params.in_channels * 2 * 2 self.out_channels = self.in_channels if params.hidden_size % params.num_heads != 0: raise ValueError( f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" ) pe_dim = params.hidden_size // params.num_heads if sum(params.axes_dim) != pe_dim: raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") self.hidden_size = params.hidden_size self.num_heads = params.num_heads self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device) self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations) self.guidance_in = ( MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity() ) self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device) self.double_blocks = nn.ModuleList( [ DoubleStreamBlock( self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, qkv_bias=params.qkv_bias, dtype=dtype, device=device, operations=operations ) for _ in range(params.depth) ] ) self.single_blocks = nn.ModuleList( [ SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations) for _ in range(params.depth_single_blocks) ] ) if final_layer: self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations) def forward_orig( self, img: Tensor, img_ids: Tensor, txt: Tensor, txt_ids: Tensor, timesteps: Tensor, y: Tensor, guidance: Tensor = None, control=None, ) -> Tensor: if img.ndim != 3 or txt.ndim != 3: raise ValueError("Input img and txt tensors must have 3 dimensions.") # running on sequences img img = self.img_in(img) vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype)) if self.params.guidance_embed: if guidance is None: raise ValueError("Didn't get guidance strength for guidance distilled model.") vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype)) vec = vec + self.vector_in(y) txt = self.txt_in(txt) ids = torch.cat((txt_ids, img_ids), dim=1) pe = self.pe_embedder(ids) for i, block in enumerate(self.double_blocks): img, txt = block(img=img, txt=txt, vec=vec, pe=pe) if control is not None: # Controlnet control_i = control.get("input") if i < len(control_i): add = control_i[i] if add is not None: img += add img = torch.cat((txt, img), 1) for i, block in enumerate(self.single_blocks): img = block(img, vec=vec, pe=pe) if control is not None: # Controlnet control_o = control.get("output") if i < len(control_o): add = control_o[i] if add is not None: img[:, txt.shape[1] :, ...] += add img = img[:, txt.shape[1] :, ...] img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) return img def forward(self, x, timestep, context, y, guidance, control=None, **kwargs): bs, c, h, w = x.shape patch_size = 2 x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size)) img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size) h_len = ((h + (patch_size // 2)) // patch_size) w_len = ((w + (patch_size // 2)) // patch_size) img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype) img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None] img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :] img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype) out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control) return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]