import torch import math def calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=None): mantissa_scaled = torch.where( normal_mask, (abs_x / (2.0 ** (exponent - EXPONENT_BIAS)) - 1.0) * (2**MANTISSA_BITS), (abs_x / (2.0 ** (-EXPONENT_BIAS + 1 - MANTISSA_BITS))) ) mantissa_scaled += torch.rand(mantissa_scaled.size(), dtype=mantissa_scaled.dtype, layout=mantissa_scaled.layout, device=mantissa_scaled.device, generator=generator) return mantissa_scaled.floor() / (2**MANTISSA_BITS) #Not 100% sure about this def manual_stochastic_round_to_float8(x, dtype, generator=None): if dtype == torch.float8_e4m3fn: EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 4, 3, 7 elif dtype == torch.float8_e5m2: EXPONENT_BITS, MANTISSA_BITS, EXPONENT_BIAS = 5, 2, 15 else: raise ValueError("Unsupported dtype") x = x.half() sign = torch.sign(x) abs_x = x.abs() sign = torch.where(abs_x == 0, 0, sign) # Combine exponent calculation and clamping exponent = torch.clamp( torch.floor(torch.log2(abs_x)) + EXPONENT_BIAS, 0, 2**EXPONENT_BITS - 1 ) # Combine mantissa calculation and rounding normal_mask = ~(exponent == 0) abs_x[:] = calc_mantissa(abs_x, exponent, normal_mask, MANTISSA_BITS, EXPONENT_BIAS, generator=generator) sign *= torch.where( normal_mask, (2.0 ** (exponent - EXPONENT_BIAS)) * (1.0 + abs_x), (2.0 ** (-EXPONENT_BIAS + 1)) * abs_x ) del abs_x return sign.to(dtype=dtype) def stochastic_rounding(value, dtype, seed=0): if dtype == torch.float32: return value.to(dtype=torch.float32) if dtype == torch.float16: return value.to(dtype=torch.float16) if dtype == torch.bfloat16: return value.to(dtype=torch.bfloat16) if dtype == torch.float8_e4m3fn or dtype == torch.float8_e5m2: generator = torch.Generator(device=value.device) generator.manual_seed(seed) return manual_stochastic_round_to_float8(value, dtype, generator=generator) return value.to(dtype=dtype)