import torch import os import sys import json import hashlib import copy from PIL import Image from PIL.PngImagePlugin import PngInfo import numpy as np sys.path.append(os.path.join(sys.path[0], "comfy")) import comfy.samplers import comfy.sd supported_ckpt_extensions = ['.ckpt'] supported_pt_extensions = ['.ckpt', '.pt', '.bin'] try: import safetensors.torch supported_ckpt_extensions += ['.safetensors'] supported_pt_extensions += ['.safetensors'] except: print("Could not import safetensors, safetensors support disabled.") def filter_files_extensions(files, extensions): return sorted(list(filter(lambda a: os.path.splitext(a)[-1].lower() in extensions, files))) class CLIPTextEncode: @classmethod def INPUT_TYPES(s): return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}} RETURN_TYPES = ("CONDITIONING",) FUNCTION = "encode" CATEGORY = "conditioning" def encode(self, clip, text): return ([[clip.encode(text), {}]], ) class ConditioningCombine: @classmethod def INPUT_TYPES(s): return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}} RETURN_TYPES = ("CONDITIONING",) FUNCTION = "combine" CATEGORY = "conditioning" def combine(self, conditioning_1, conditioning_2): return (conditioning_1 + conditioning_2, ) class ConditioningSetArea: @classmethod def INPUT_TYPES(s): return {"required": {"conditioning": ("CONDITIONING", ), "width": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}), "height": ("INT", {"default": 64, "min": 64, "max": 4096, "step": 64}), "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}), "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 64}), "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), }} RETURN_TYPES = ("CONDITIONING",) FUNCTION = "append" CATEGORY = "conditioning" def append(self, conditioning, width, height, x, y, strength, min_sigma=0.0, max_sigma=99.0): c = copy.deepcopy(conditioning) for t in c: t[1]['area'] = (height // 8, width // 8, y // 8, x // 8) t[1]['strength'] = strength t[1]['min_sigma'] = min_sigma t[1]['max_sigma'] = max_sigma return (c, ) class VAEDecode: def __init__(self, device="cpu"): self.device = device @classmethod def INPUT_TYPES(s): return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}} RETURN_TYPES = ("IMAGE",) FUNCTION = "decode" CATEGORY = "latent" def decode(self, vae, samples): return (vae.decode(samples), ) class VAEEncode: def __init__(self, device="cpu"): self.device = device @classmethod def INPUT_TYPES(s): return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}} RETURN_TYPES = ("LATENT",) FUNCTION = "encode" CATEGORY = "latent" def encode(self, vae, pixels): x = (pixels.shape[1] // 64) * 64 y = (pixels.shape[2] // 64) * 64 if pixels.shape[1] != x or pixels.shape[2] != y: pixels = pixels[:,:x,:y,:] return (vae.encode(pixels), ) class CheckpointLoader: models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models") config_dir = os.path.join(models_dir, "configs") ckpt_dir = os.path.join(models_dir, "checkpoints") embedding_directory = os.path.join(models_dir, "embeddings") @classmethod def INPUT_TYPES(s): return {"required": { "config_name": (filter_files_extensions(os.listdir(s.config_dir), '.yaml'), ), "ckpt_name": (filter_files_extensions(os.listdir(s.ckpt_dir), supported_ckpt_extensions), )}} RETURN_TYPES = ("MODEL", "CLIP", "VAE") FUNCTION = "load_checkpoint" CATEGORY = "loaders" def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True): config_path = os.path.join(self.config_dir, config_name) ckpt_path = os.path.join(self.ckpt_dir, ckpt_name) return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=self.embedding_directory) class LoraLoader: models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models") lora_dir = os.path.join(models_dir, "loras") @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "clip": ("CLIP", ), "lora_name": (filter_files_extensions(os.listdir(s.lora_dir), supported_pt_extensions), ), "strength_model": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), "strength_clip": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}), }} RETURN_TYPES = ("MODEL", "CLIP") FUNCTION = "load_lora" CATEGORY = "loaders" def load_lora(self, model, clip, lora_name, strength_model, strength_clip): lora_path = os.path.join(self.lora_dir, lora_name) model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip) return (model_lora, clip_lora) class VAELoader: models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models") vae_dir = os.path.join(models_dir, "vae") @classmethod def INPUT_TYPES(s): return {"required": { "vae_name": (filter_files_extensions(os.listdir(s.vae_dir), supported_pt_extensions), )}} RETURN_TYPES = ("VAE",) FUNCTION = "load_vae" CATEGORY = "loaders" #TODO: scale factor? def load_vae(self, vae_name): vae_path = os.path.join(self.vae_dir, vae_name) vae = comfy.sd.VAE(ckpt_path=vae_path) return (vae,) class CLIPLoader: models_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "models") clip_dir = os.path.join(models_dir, "clip") @classmethod def INPUT_TYPES(s): return {"required": { "clip_name": (filter_files_extensions(os.listdir(s.clip_dir), supported_pt_extensions), ), "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}), }} RETURN_TYPES = ("CLIP",) FUNCTION = "load_clip" CATEGORY = "loaders" def load_clip(self, clip_name, stop_at_clip_layer): clip_path = os.path.join(self.clip_dir, clip_name) clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=CheckpointLoader.embedding_directory) clip.clip_layer(stop_at_clip_layer) return (clip,) class EmptyLatentImage: def __init__(self, device="cpu"): self.device = device @classmethod def INPUT_TYPES(s): return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}} RETURN_TYPES = ("LATENT",) FUNCTION = "generate" CATEGORY = "latent" def generate(self, width, height, batch_size=1): latent = torch.zeros([batch_size, 4, height // 8, width // 8]) return (latent, ) def common_upscale(samples, width, height, upscale_method, crop): if crop == "center": old_width = samples.shape[3] old_height = samples.shape[2] old_aspect = old_width / old_height new_aspect = width / height x = 0 y = 0 if old_aspect > new_aspect: x = round((old_width - old_width * (new_aspect / old_aspect)) / 2) elif old_aspect < new_aspect: y = round((old_height - old_height * (old_aspect / new_aspect)) / 2) s = samples[:,:,y:old_height-y,x:old_width-x] else: s = samples return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method) class LatentUpscale: upscale_methods = ["nearest-exact", "bilinear", "area"] crop_methods = ["disabled", "center"] @classmethod def INPUT_TYPES(s): return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,), "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), "crop": (s.crop_methods,)}} RETURN_TYPES = ("LATENT",) FUNCTION = "upscale" CATEGORY = "latent" def upscale(self, samples, upscale_method, width, height, crop): s = common_upscale(samples, width // 8, height // 8, upscale_method, crop) return (s,) class LatentRotate: @classmethod def INPUT_TYPES(s): return {"required": { "samples": ("LATENT",), "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],), }} RETURN_TYPES = ("LATENT",) FUNCTION = "rotate" CATEGORY = "latent" def rotate(self, samples, rotation): rotate_by = 0 if rotation.startswith("90"): rotate_by = 1 elif rotation.startswith("180"): rotate_by = 2 elif rotation.startswith("270"): rotate_by = 3 s = torch.rot90(samples, k=rotate_by, dims=[3, 2]) return (s,) class LatentFlip: @classmethod def INPUT_TYPES(s): return {"required": { "samples": ("LATENT",), "flip_method": (["x-axis: vertically", "y-axis: horizontally"],), }} RETURN_TYPES = ("LATENT",) FUNCTION = "flip" CATEGORY = "latent" def flip(self, samples, flip_method): if flip_method.startswith("x"): s = torch.flip(samples, dims=[2]) elif flip_method.startswith("y"): s = torch.flip(samples, dims=[3]) else: s = samples return (s,) class LatentComposite: @classmethod def INPUT_TYPES(s): return {"required": { "samples_to": ("LATENT",), "samples_from": ("LATENT",), "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}), "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}), }} RETURN_TYPES = ("LATENT",) FUNCTION = "composite" CATEGORY = "latent" def composite(self, samples_to, samples_from, x, y, composite_method="normal"): x = x // 8 y = y // 8 s = samples_to.clone() s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] return (s,) class LatentCrop: @classmethod def INPUT_TYPES(s): return {"required": { "samples": ("LATENT",), "width": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), "height": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}), "x": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}), "y": ("INT", {"default": 0, "min": 0, "max": 4096, "step": 8}), }} RETURN_TYPES = ("LATENT",) FUNCTION = "crop" CATEGORY = "latent" def crop(self, samples, width, height, x, y): x = x // 8 y = y // 8 #enfonce minimum size of 64 if x > (samples.shape[3] - 8): x = samples.shape[3] - 8 if y > (samples.shape[2] - 8): y = samples.shape[2] - 8 new_height = height // 8 new_width = width // 8 to_x = new_width + x to_y = new_height + y def enforce_image_dim(d, to_d, max_d): if to_d > max_d: leftover = (to_d - max_d) % 8 to_d = max_d d -= leftover return (d, to_d) #make sure size is always multiple of 64 x, to_x = enforce_image_dim(x, to_x, samples.shape[3]) y, to_y = enforce_image_dim(y, to_y, samples.shape[2]) s = samples[:,:,y:to_y, x:to_x] return (s,) def common_ksampler(device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False): if disable_noise: noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu") else: noise = torch.randn(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, generator=torch.manual_seed(seed), device="cpu") real_model = None try: real_model = model.patch_model() real_model.to(device) noise = noise.to(device) latent_image = latent_image.to(device) positive_copy = [] negative_copy = [] for p in positive: t = p[0] if t.shape[0] < noise.shape[0]: t = torch.cat([t] * noise.shape[0]) t = t.to(device) positive_copy += [[t] + p[1:]] for n in negative: t = n[0] if t.shape[0] < noise.shape[0]: t = torch.cat([t] * noise.shape[0]) t = t.to(device) negative_copy += [[t] + n[1:]] if sampler_name in comfy.samplers.KSampler.SAMPLERS: sampler = comfy.samplers.KSampler(real_model, steps=steps, device=device, sampler=sampler_name, scheduler=scheduler, denoise=denoise) else: #other samplers pass samples = sampler.sample(noise, positive_copy, negative_copy, cfg=cfg, latent_image=latent_image, start_step=start_step, last_step=last_step, force_full_denoise=force_full_denoise) samples = samples.cpu() real_model.cpu() model.unpatch_model() except Exception as e: if real_model is not None: real_model.cpu() model.unpatch_model() raise e return (samples, ) class KSampler: def __init__(self, device="cuda"): self.device = device @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "latent_image": ("LATENT", ), "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), }} RETURN_TYPES = ("LATENT",) FUNCTION = "sample" CATEGORY = "sampling" def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0): return common_ksampler(self.device, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise) class KSamplerAdvanced: def __init__(self, device="cuda"): self.device = device @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), "add_noise": (["enable", "disable"], ), "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}), "steps": ("INT", {"default": 20, "min": 1, "max": 10000}), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}), "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ), "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "latent_image": ("LATENT", ), "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}), "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}), "return_with_leftover_noise": (["disable", "enable"], ), }} RETURN_TYPES = ("LATENT",) FUNCTION = "sample" CATEGORY = "sampling" def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0): force_full_denoise = True if return_with_leftover_noise == "enable": force_full_denoise = False disable_noise = False if add_noise == "disable": disable_noise = True return common_ksampler(self.device, model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise) class SaveImage: def __init__(self): self.output_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output") @classmethod def INPUT_TYPES(s): return {"required": {"images": ("IMAGE", ), "filename_prefix": ("STRING", {"default": "ComfyUI"})}, "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"}, } RETURN_TYPES = () FUNCTION = "save_images" OUTPUT_NODE = True CATEGORY = "image" def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None): def map_filename(filename): prefix_len = len(filename_prefix) prefix = filename[:prefix_len + 1] try: digits = int(filename[prefix_len + 1:].split('_')[0]) except: digits = 0 return (digits, prefix) try: counter = max(filter(lambda a: a[1][:-1] == filename_prefix and a[1][-1] == "_", map(map_filename, os.listdir(self.output_dir))))[0] + 1 except ValueError: counter = 1 for image in images: i = 255. * image.cpu().numpy() img = Image.fromarray(i.astype(np.uint8)) metadata = PngInfo() if prompt is not None: metadata.add_text("prompt", json.dumps(prompt)) if extra_pnginfo is not None: for x in extra_pnginfo: metadata.add_text(x, json.dumps(extra_pnginfo[x])) img.save(f"output/{filename_prefix}_{counter:05}_.png", pnginfo=metadata, optimize=True) counter += 1 class LoadImage: input_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "input") @classmethod def INPUT_TYPES(s): return {"required": {"image": (os.listdir(s.input_dir), )}, } CATEGORY = "image" RETURN_TYPES = ("IMAGE",) FUNCTION = "load_image" def load_image(self, image): image_path = os.path.join(self.input_dir, image) image = Image.open(image_path).convert("RGB") image = np.array(image).astype(np.float32) / 255.0 image = torch.from_numpy(image[None])[None,] return image @classmethod def IS_CHANGED(s, image): image_path = os.path.join(s.input_dir, image) m = hashlib.sha256() with open(image_path, 'rb') as f: m.update(f.read()) return m.digest().hex() class ImageScale: upscale_methods = ["nearest-exact", "bilinear", "area"] crop_methods = ["disabled", "center"] @classmethod def INPUT_TYPES(s): return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,), "width": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}), "height": ("INT", {"default": 512, "min": 1, "max": 4096, "step": 1}), "crop": (s.crop_methods,)}} RETURN_TYPES = ("IMAGE",) FUNCTION = "upscale" CATEGORY = "image" def upscale(self, image, upscale_method, width, height, crop): samples = image.movedim(-1,1) s = common_upscale(samples, width, height, upscale_method, crop) s = s.movedim(1,-1) return (s,) NODE_CLASS_MAPPINGS = { "KSampler": KSampler, "CheckpointLoader": CheckpointLoader, "CLIPTextEncode": CLIPTextEncode, "VAEDecode": VAEDecode, "VAEEncode": VAEEncode, "VAELoader": VAELoader, "EmptyLatentImage": EmptyLatentImage, "LatentUpscale": LatentUpscale, "SaveImage": SaveImage, "LoadImage": LoadImage, "ImageScale": ImageScale, "ConditioningCombine": ConditioningCombine, "ConditioningSetArea": ConditioningSetArea, "KSamplerAdvanced": KSamplerAdvanced, "LatentComposite": LatentComposite, "LatentRotate": LatentRotate, "LatentFlip": LatentFlip, "LatentCrop": LatentCrop, "LoraLoader": LoraLoader, "CLIPLoader": CLIPLoader, }