# pylint: skip-file # ----------------------------------------------------------------------------------- # SwinIR: Image Restoration Using Swin Transformer, https://arxiv.org/abs/2108.10257 # Originally Written by Ze Liu, Modified by Jingyun Liang. # ----------------------------------------------------------------------------------- import math import re import torch import torch.nn as nn import torch.nn.functional as F import torch.utils.checkpoint as checkpoint # Originally from the timm package from .timm.drop import DropPath from .timm.helpers import to_2tuple from .timm.weight_init import trunc_normal_ class Mlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x def window_partition(x, window_size): """ Args: x: (B, H, W, C) window_size (int): window size Returns: windows: (num_windows*B, window_size, window_size, C) """ B, H, W, C = x.shape x = x.view(B, H // window_size, window_size, W // window_size, window_size, C) windows = ( x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C) ) return windows def window_reverse(windows, window_size, H, W): """ Args: windows: (num_windows*B, window_size, window_size, C) window_size (int): Window size H (int): Height of image W (int): Width of image Returns: x: (B, H, W, C) """ B = int(windows.shape[0] / (H * W / window_size / window_size)) x = windows.view( B, H // window_size, W // window_size, window_size, window_size, -1 ) x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) return x class WindowAttention(nn.Module): r"""Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__( self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0.0, proj_drop=0.0, ): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 # define a parameter table of relative position bias self.relative_position_bias_table = nn.Parameter( # type: ignore torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads) ) # 2*Wh-1 * 2*Ww-1, nH # get pair-wise relative position index for each token inside the window coords_h = torch.arange(self.window_size[0]) coords_w = torch.arange(self.window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = ( coords_flatten[:, :, None] - coords_flatten[:, None, :] ) # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute( 1, 2, 0 ).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += self.window_size[1] - 1 relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) trunc_normal_(self.relative_position_bias_table, std=0.02) self.softmax = nn.Softmax(dim=-1) def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape qkv = ( self.qkv(x) .reshape(B_, N, 3, self.num_heads, C // self.num_heads) .permute(2, 0, 3, 1, 4) ) q, k, v = ( qkv[0], qkv[1], qkv[2], ) # make torchscript happy (cannot use tensor as tuple) q = q * self.scale attn = q @ k.transpose(-2, -1) relative_position_bias = self.relative_position_bias_table[ self.relative_position_index.view(-1) # type: ignore ].view( self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1, ) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute( 2, 0, 1 ).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0) if mask is not None: nW = mask.shape[0] attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze( 1 ).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn) else: attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}" def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class SwinTransformerBlock(nn.Module): r"""Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__( self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert ( 0 <= self.shift_size < self.window_size ), "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop, ) if self.shift_size > 0: attn_mask = self.calculate_mask(self.input_resolution) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def calculate_mask(self, x_size): # calculate attention mask for SW-MSA H, W = x_size img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1 h_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) w_slices = ( slice(0, -self.window_size), slice(-self.window_size, -self.shift_size), slice(-self.shift_size, None), ) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition( img_mask, self.window_size ) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill( attn_mask == 0, float(0.0) ) return attn_mask def forward(self, x, x_size): H, W = x_size B, L, C = x.shape # assert L == H * W, "input feature has wrong size" shortcut = x x = self.norm1(x) x = x.view(B, H, W, C) # cyclic shift if self.shift_size > 0: shifted_x = torch.roll( x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2) ) else: shifted_x = x # partition windows x_windows = window_partition( shifted_x, self.window_size ) # nW*B, window_size, window_size, C x_windows = x_windows.view( -1, self.window_size * self.window_size, C ) # nW*B, window_size*window_size, C # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size if self.input_resolution == x_size: attn_windows = self.attn( x_windows, mask=self.attn_mask ) # nW*B, window_size*window_size, C else: attn_windows = self.attn( x_windows, mask=self.calculate_mask(x_size).to(x.device) ) # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C) shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C # reverse cyclic shift if self.shift_size > 0: x = torch.roll( shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2) ) else: x = shifted_x x = x.view(B, H * W, C) # FFN x = shortcut + self.drop_path(x) x = x + self.drop_path(self.mlp(self.norm2(x))) return x def extra_repr(self) -> str: return ( f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}" ) def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Module): r"""Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x def extra_repr(self) -> str: return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim return flops class BasicLayer(nn.Module): """A basic Swin Transformer layer for one stage. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. """ def __init__( self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.depth = depth self.use_checkpoint = use_checkpoint # build blocks self.blocks = nn.ModuleList( [ SwinTransformerBlock( dim=dim, input_resolution=input_resolution, num_heads=num_heads, window_size=window_size, shift_size=0 if (i % 2 == 0) else window_size // 2, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path, norm_layer=norm_layer, ) for i in range(depth) ] ) # patch merging layer if downsample is not None: self.downsample = downsample( input_resolution, dim=dim, norm_layer=norm_layer ) else: self.downsample = None def forward(self, x, x_size): for blk in self.blocks: if self.use_checkpoint: x = checkpoint.checkpoint(blk, x, x_size) else: x = blk(x, x_size) if self.downsample is not None: x = self.downsample(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" def flops(self): flops = 0 for blk in self.blocks: flops += blk.flops() # type: ignore if self.downsample is not None: flops += self.downsample.flops() return flops class RSTB(nn.Module): """Residual Swin Transformer Block (RSTB). Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resolution. depth (int): Number of blocks. num_heads (int): Number of attention heads. window_size (int): Local window size. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. img_size: Input image size. patch_size: Patch size. resi_connection: The convolutional block before residual connection. """ def __init__( self, dim, input_resolution, depth, num_heads, window_size, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False, img_size=224, patch_size=4, resi_connection="1conv", ): super(RSTB, self).__init__() self.dim = dim self.input_resolution = input_resolution self.residual_group = BasicLayer( dim=dim, input_resolution=input_resolution, depth=depth, num_heads=num_heads, window_size=window_size, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop, attn_drop=attn_drop, drop_path=drop_path, norm_layer=norm_layer, downsample=downsample, use_checkpoint=use_checkpoint, ) if resi_connection == "1conv": self.conv = nn.Conv2d(dim, dim, 3, 1, 1) elif resi_connection == "3conv": # to save parameters and memory self.conv = nn.Sequential( nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(dim // 4, dim, 3, 1, 1), ) self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None, ) self.patch_unembed = PatchUnEmbed( img_size=img_size, patch_size=patch_size, in_chans=0, embed_dim=dim, norm_layer=None, ) def forward(self, x, x_size): return ( self.patch_embed( self.conv(self.patch_unembed(self.residual_group(x, x_size), x_size)) ) + x ) def flops(self): flops = 0 flops += self.residual_group.flops() H, W = self.input_resolution flops += H * W * self.dim * self.dim * 9 flops += self.patch_embed.flops() flops += self.patch_unembed.flops() return flops class PatchEmbed(nn.Module): r"""Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__( self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None ): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [ img_size[0] // patch_size[0], # type: ignore img_size[1] // patch_size[1], # type: ignore ] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): x = x.flatten(2).transpose(1, 2) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x def flops(self): flops = 0 H, W = self.img_size if self.norm is not None: flops += H * W * self.embed_dim # type: ignore return flops class PatchUnEmbed(nn.Module): r"""Image to Patch Unembedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__( self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None ): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [ img_size[0] // patch_size[0], # type: ignore img_size[1] // patch_size[1], # type: ignore ] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim def forward(self, x, x_size): B, HW, C = x.shape x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C return x def flops(self): flops = 0 return flops class Upsample(nn.Sequential): """Upsample module. Args: scale (int): Scale factor. Supported scales: 2^n and 3. num_feat (int): Channel number of intermediate features. """ def __init__(self, scale, num_feat): m = [] if (scale & (scale - 1)) == 0: # scale = 2^n for _ in range(int(math.log(scale, 2))): m.append(nn.Conv2d(num_feat, 4 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(2)) elif scale == 3: m.append(nn.Conv2d(num_feat, 9 * num_feat, 3, 1, 1)) m.append(nn.PixelShuffle(3)) else: raise ValueError( f"scale {scale} is not supported. " "Supported scales: 2^n and 3." ) super(Upsample, self).__init__(*m) class UpsampleOneStep(nn.Sequential): """UpsampleOneStep module (the difference with Upsample is that it always only has 1conv + 1pixelshuffle) Used in lightweight SR to save parameters. Args: scale (int): Scale factor. Supported scales: 2^n and 3. num_feat (int): Channel number of intermediate features. """ def __init__(self, scale, num_feat, num_out_ch, input_resolution=None): self.num_feat = num_feat self.input_resolution = input_resolution m = [] m.append(nn.Conv2d(num_feat, (scale**2) * num_out_ch, 3, 1, 1)) m.append(nn.PixelShuffle(scale)) super(UpsampleOneStep, self).__init__(*m) def flops(self): H, W = self.input_resolution # type: ignore flops = H * W * self.num_feat * 3 * 9 return flops class SwinIR(nn.Module): r"""SwinIR A PyTorch impl of : `SwinIR: Image Restoration Using Swin Transformer`, based on Swin Transformer. Args: img_size (int | tuple(int)): Input image size. Default 64 patch_size (int | tuple(int)): Patch size. Default: 1 in_chans (int): Number of input image channels. Default: 3 embed_dim (int): Patch embedding dimension. Default: 96 depths (tuple(int)): Depth of each Swin Transformer layer. num_heads (tuple(int)): Number of attention heads in different layers. window_size (int): Window size. Default: 7 mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4 qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None drop_rate (float): Dropout rate. Default: 0 attn_drop_rate (float): Attention dropout rate. Default: 0 drop_path_rate (float): Stochastic depth rate. Default: 0.1 norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. ape (bool): If True, add absolute position embedding to the patch embedding. Default: False patch_norm (bool): If True, add normalization after patch embedding. Default: True use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False upscale: Upscale factor. 2/3/4/8 for image SR, 1 for denoising and compress artifact reduction img_range: Image range. 1. or 255. upsampler: The reconstruction reconstruction module. 'pixelshuffle'/'pixelshuffledirect'/'nearest+conv'/None resi_connection: The convolutional block before residual connection. '1conv'/'3conv' """ def __init__( self, state_dict, **kwargs, ): super(SwinIR, self).__init__() # Defaults img_size = 64 patch_size = 1 in_chans = 3 embed_dim = 96 depths = [6, 6, 6, 6] num_heads = [6, 6, 6, 6] window_size = 7 mlp_ratio = 4.0 qkv_bias = True qk_scale = None drop_rate = 0.0 attn_drop_rate = 0.0 drop_path_rate = 0.1 norm_layer = nn.LayerNorm ape = False patch_norm = True use_checkpoint = False upscale = 2 img_range = 1.0 upsampler = "" resi_connection = "1conv" num_feat = 64 num_in_ch = in_chans num_out_ch = in_chans supports_fp16 = True self.model_arch = "SwinIR" self.sub_type = "SR" self.state = state_dict if "params_ema" in self.state: self.state = self.state["params_ema"] elif "params" in self.state: self.state = self.state["params"] state_keys = self.state.keys() if "conv_before_upsample.0.weight" in state_keys: if "conv_up1.weight" in state_keys: upsampler = "nearest+conv" else: upsampler = "pixelshuffle" supports_fp16 = False elif "upsample.0.weight" in state_keys: upsampler = "pixelshuffledirect" else: upsampler = "" num_feat = ( self.state.get("conv_before_upsample.0.weight", None).shape[1] if self.state.get("conv_before_upsample.weight", None) else 64 ) num_in_ch = self.state["conv_first.weight"].shape[1] in_chans = num_in_ch if "conv_last.weight" in state_keys: num_out_ch = self.state["conv_last.weight"].shape[0] else: num_out_ch = num_in_ch upscale = 1 if upsampler == "nearest+conv": upsample_keys = [ x for x in state_keys if "conv_up" in x and "bias" not in x ] for upsample_key in upsample_keys: upscale *= 2 elif upsampler == "pixelshuffle": upsample_keys = [ x for x in state_keys if "upsample" in x and "conv" not in x and "bias" not in x ] for upsample_key in upsample_keys: shape = self.state[upsample_key].shape[0] upscale *= math.sqrt(shape // num_feat) upscale = int(upscale) elif upsampler == "pixelshuffledirect": upscale = int( math.sqrt(self.state["upsample.0.bias"].shape[0] // num_out_ch) ) max_layer_num = 0 max_block_num = 0 for key in state_keys: result = re.match( r"layers.(\d*).residual_group.blocks.(\d*).norm1.weight", key ) if result: layer_num, block_num = result.groups() max_layer_num = max(max_layer_num, int(layer_num)) max_block_num = max(max_block_num, int(block_num)) depths = [max_block_num + 1 for _ in range(max_layer_num + 1)] if ( "layers.0.residual_group.blocks.0.attn.relative_position_bias_table" in state_keys ): num_heads_num = self.state[ "layers.0.residual_group.blocks.0.attn.relative_position_bias_table" ].shape[-1] num_heads = [num_heads_num for _ in range(max_layer_num + 1)] else: num_heads = depths embed_dim = self.state["conv_first.weight"].shape[0] mlp_ratio = float( self.state["layers.0.residual_group.blocks.0.mlp.fc1.bias"].shape[0] / embed_dim ) # TODO: could actually count the layers, but this should do if "layers.0.conv.4.weight" in state_keys: resi_connection = "3conv" else: resi_connection = "1conv" window_size = int( math.sqrt( self.state[ "layers.0.residual_group.blocks.0.attn.relative_position_index" ].shape[0] ) ) if "layers.0.residual_group.blocks.1.attn_mask" in state_keys: img_size = int( math.sqrt( self.state["layers.0.residual_group.blocks.1.attn_mask"].shape[0] ) * window_size ) # The JPEG models are the only ones with window-size 7, and they also use this range img_range = 255.0 if window_size == 7 else 1.0 self.in_nc = num_in_ch self.out_nc = num_out_ch self.num_feat = num_feat self.embed_dim = embed_dim self.num_heads = num_heads self.depths = depths self.window_size = window_size self.mlp_ratio = mlp_ratio self.scale = upscale self.upsampler = upsampler self.img_size = img_size self.img_range = img_range self.resi_connection = resi_connection self.supports_fp16 = False # Too much weirdness to support this at the moment self.supports_bfp16 = True self.min_size_restriction = 16 self.img_range = img_range if in_chans == 3: rgb_mean = (0.4488, 0.4371, 0.4040) self.mean = torch.Tensor(rgb_mean).view(1, 3, 1, 1) else: self.mean = torch.zeros(1, 1, 1, 1) self.upscale = upscale self.upsampler = upsampler self.window_size = window_size ##################################################################################################### ################################### 1, shallow feature extraction ################################### self.conv_first = nn.Conv2d(num_in_ch, embed_dim, 3, 1, 1) ##################################################################################################### ################################### 2, deep feature extraction ###################################### self.num_layers = len(depths) self.embed_dim = embed_dim self.ape = ape self.patch_norm = patch_norm self.num_features = embed_dim self.mlp_ratio = mlp_ratio # split image into non-overlapping patches self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None, ) num_patches = self.patch_embed.num_patches patches_resolution = self.patch_embed.patches_resolution self.patches_resolution = patches_resolution # merge non-overlapping patches into image self.patch_unembed = PatchUnEmbed( img_size=img_size, patch_size=patch_size, in_chans=embed_dim, embed_dim=embed_dim, norm_layer=norm_layer if self.patch_norm else None, ) # absolute position embedding if self.ape: self.absolute_pos_embed = nn.Parameter( # type: ignore torch.zeros(1, num_patches, embed_dim) ) trunc_normal_(self.absolute_pos_embed, std=0.02) self.pos_drop = nn.Dropout(p=drop_rate) # stochastic depth dpr = [ x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule # build Residual Swin Transformer blocks (RSTB) self.layers = nn.ModuleList() for i_layer in range(self.num_layers): layer = RSTB( dim=embed_dim, input_resolution=(patches_resolution[0], patches_resolution[1]), depth=depths[i_layer], num_heads=num_heads[i_layer], window_size=window_size, mlp_ratio=self.mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[ sum(depths[:i_layer]) : sum(depths[: i_layer + 1]) # type: ignore ], # no impact on SR results norm_layer=norm_layer, downsample=None, use_checkpoint=use_checkpoint, img_size=img_size, patch_size=patch_size, resi_connection=resi_connection, ) self.layers.append(layer) self.norm = norm_layer(self.num_features) # build the last conv layer in deep feature extraction if resi_connection == "1conv": self.conv_after_body = nn.Conv2d(embed_dim, embed_dim, 3, 1, 1) elif resi_connection == "3conv": # to save parameters and memory self.conv_after_body = nn.Sequential( nn.Conv2d(embed_dim, embed_dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(embed_dim // 4, embed_dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(embed_dim // 4, embed_dim, 3, 1, 1), ) ##################################################################################################### ################################ 3, high quality image reconstruction ################################ if self.upsampler == "pixelshuffle": # for classical SR self.conv_before_upsample = nn.Sequential( nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) ) self.upsample = Upsample(upscale, num_feat) self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) elif self.upsampler == "pixelshuffledirect": # for lightweight SR (to save parameters) self.upsample = UpsampleOneStep( upscale, embed_dim, num_out_ch, (patches_resolution[0], patches_resolution[1]), ) elif self.upsampler == "nearest+conv": # for real-world SR (less artifacts) self.conv_before_upsample = nn.Sequential( nn.Conv2d(embed_dim, num_feat, 3, 1, 1), nn.LeakyReLU(inplace=True) ) self.conv_up1 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) if self.upscale == 4: self.conv_up2 = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.conv_hr = nn.Conv2d(num_feat, num_feat, 3, 1, 1) self.conv_last = nn.Conv2d(num_feat, num_out_ch, 3, 1, 1) self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True) else: # for image denoising and JPEG compression artifact reduction self.conv_last = nn.Conv2d(embed_dim, num_out_ch, 3, 1, 1) self.apply(self._init_weights) self.load_state_dict(self.state, strict=False) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore # type: ignore def no_weight_decay(self): return {"absolute_pos_embed"} @torch.jit.ignore # type: ignore def no_weight_decay_keywords(self): return {"relative_position_bias_table"} def check_image_size(self, x): _, _, h, w = x.size() mod_pad_h = (self.window_size - h % self.window_size) % self.window_size mod_pad_w = (self.window_size - w % self.window_size) % self.window_size x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect") return x def forward_features(self, x): x_size = (x.shape[2], x.shape[3]) x = self.patch_embed(x) if self.ape: x = x + self.absolute_pos_embed x = self.pos_drop(x) for layer in self.layers: x = layer(x, x_size) x = self.norm(x) # B L C x = self.patch_unembed(x, x_size) return x def forward(self, x): H, W = x.shape[2:] x = self.check_image_size(x) self.mean = self.mean.type_as(x) x = (x - self.mean) * self.img_range if self.upsampler == "pixelshuffle": # for classical SR x = self.conv_first(x) x = self.conv_after_body(self.forward_features(x)) + x x = self.conv_before_upsample(x) x = self.conv_last(self.upsample(x)) elif self.upsampler == "pixelshuffledirect": # for lightweight SR x = self.conv_first(x) x = self.conv_after_body(self.forward_features(x)) + x x = self.upsample(x) elif self.upsampler == "nearest+conv": # for real-world SR x = self.conv_first(x) x = self.conv_after_body(self.forward_features(x)) + x x = self.conv_before_upsample(x) x = self.lrelu( self.conv_up1( torch.nn.functional.interpolate(x, scale_factor=2, mode="nearest") # type: ignore ) ) if self.upscale == 4: x = self.lrelu( self.conv_up2( torch.nn.functional.interpolate( # type: ignore x, scale_factor=2, mode="nearest" ) ) ) x = self.conv_last(self.lrelu(self.conv_hr(x))) else: # for image denoising and JPEG compression artifact reduction x_first = self.conv_first(x) res = self.conv_after_body(self.forward_features(x_first)) + x_first x = x + self.conv_last(res) x = x / self.img_range + self.mean return x[:, :, : H * self.upscale, : W * self.upscale] def flops(self): flops = 0 H, W = self.patches_resolution flops += H * W * 3 * self.embed_dim * 9 flops += self.patch_embed.flops() for i, layer in enumerate(self.layers): flops += layer.flops() # type: ignore flops += H * W * 3 * self.embed_dim * self.embed_dim flops += self.upsample.flops() # type: ignore return flops