#original code from https://github.com/genmoai/models under apache 2.0 license #adapted to ComfyUI from typing import Callable, List, Optional, Tuple, Union from functools import partial import math import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange from comfy.ldm.modules.attention import optimized_attention import comfy.ops ops = comfy.ops.disable_weight_init # import mochi_preview.dit.joint_model.context_parallel as cp # from mochi_preview.vae.cp_conv import cp_pass_frames, gather_all_frames def cast_tuple(t, length=1): return t if isinstance(t, tuple) else ((t,) * length) class GroupNormSpatial(ops.GroupNorm): """ GroupNorm applied per-frame. """ def forward(self, x: torch.Tensor, *, chunk_size: int = 8): B, C, T, H, W = x.shape x = rearrange(x, "B C T H W -> (B T) C H W") # Run group norm in chunks. output = torch.empty_like(x) for b in range(0, B * T, chunk_size): output[b : b + chunk_size] = super().forward(x[b : b + chunk_size]) return rearrange(output, "(B T) C H W -> B C T H W", B=B, T=T) class PConv3d(ops.Conv3d): def __init__( self, in_channels, out_channels, kernel_size: Union[int, Tuple[int, int, int]], stride: Union[int, Tuple[int, int, int]], causal: bool = True, context_parallel: bool = True, **kwargs, ): self.causal = causal self.context_parallel = context_parallel kernel_size = cast_tuple(kernel_size, 3) stride = cast_tuple(stride, 3) height_pad = (kernel_size[1] - 1) // 2 width_pad = (kernel_size[2] - 1) // 2 super().__init__( in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride, dilation=(1, 1, 1), padding=(0, height_pad, width_pad), **kwargs, ) def forward(self, x: torch.Tensor): # Compute padding amounts. context_size = self.kernel_size[0] - 1 if self.causal: pad_front = context_size pad_back = 0 else: pad_front = context_size // 2 pad_back = context_size - pad_front # Apply padding. assert self.padding_mode == "replicate" # DEBUG mode = "constant" if self.padding_mode == "zeros" else self.padding_mode x = F.pad(x, (0, 0, 0, 0, pad_front, pad_back), mode=mode) return super().forward(x) class Conv1x1(ops.Linear): """*1x1 Conv implemented with a linear layer.""" def __init__(self, in_features: int, out_features: int, *args, **kwargs): super().__init__(in_features, out_features, *args, **kwargs) def forward(self, x: torch.Tensor): """Forward pass. Args: x: Input tensor. Shape: [B, C, *] or [B, *, C]. Returns: x: Output tensor. Shape: [B, C', *] or [B, *, C']. """ x = x.movedim(1, -1) x = super().forward(x) x = x.movedim(-1, 1) return x class DepthToSpaceTime(nn.Module): def __init__( self, temporal_expansion: int, spatial_expansion: int, ): super().__init__() self.temporal_expansion = temporal_expansion self.spatial_expansion = spatial_expansion # When printed, this module should show the temporal and spatial expansion factors. def extra_repr(self): return f"texp={self.temporal_expansion}, sexp={self.spatial_expansion}" def forward(self, x: torch.Tensor): """Forward pass. Args: x: Input tensor. Shape: [B, C, T, H, W]. Returns: x: Rearranged tensor. Shape: [B, C/(st*s*s), T*st, H*s, W*s]. """ x = rearrange( x, "B (C st sh sw) T H W -> B C (T st) (H sh) (W sw)", st=self.temporal_expansion, sh=self.spatial_expansion, sw=self.spatial_expansion, ) # cp_rank, _ = cp.get_cp_rank_size() if self.temporal_expansion > 1: # and cp_rank == 0: # Drop the first self.temporal_expansion - 1 frames. # This is because we always want the 3x3x3 conv filter to only apply # to the first frame, and the first frame doesn't need to be repeated. assert all(x.shape) x = x[:, :, self.temporal_expansion - 1 :] assert all(x.shape) return x def norm_fn( in_channels: int, affine: bool = True, ): return GroupNormSpatial(affine=affine, num_groups=32, num_channels=in_channels) class ResBlock(nn.Module): """Residual block that preserves the spatial dimensions.""" def __init__( self, channels: int, *, affine: bool = True, attn_block: Optional[nn.Module] = None, causal: bool = True, prune_bottleneck: bool = False, padding_mode: str, bias: bool = True, ): super().__init__() self.channels = channels assert causal self.stack = nn.Sequential( norm_fn(channels, affine=affine), nn.SiLU(inplace=True), PConv3d( in_channels=channels, out_channels=channels // 2 if prune_bottleneck else channels, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding_mode=padding_mode, bias=bias, causal=causal, ), norm_fn(channels, affine=affine), nn.SiLU(inplace=True), PConv3d( in_channels=channels // 2 if prune_bottleneck else channels, out_channels=channels, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding_mode=padding_mode, bias=bias, causal=causal, ), ) self.attn_block = attn_block if attn_block else nn.Identity() def forward(self, x: torch.Tensor): """Forward pass. Args: x: Input tensor. Shape: [B, C, T, H, W]. """ residual = x x = self.stack(x) x = x + residual del residual return self.attn_block(x) class Attention(nn.Module): def __init__( self, dim: int, head_dim: int = 32, qkv_bias: bool = False, out_bias: bool = True, qk_norm: bool = True, ) -> None: super().__init__() self.head_dim = head_dim self.num_heads = dim // head_dim self.qk_norm = qk_norm self.qkv = nn.Linear(dim, 3 * dim, bias=qkv_bias) self.out = nn.Linear(dim, dim, bias=out_bias) def forward( self, x: torch.Tensor, ) -> torch.Tensor: """Compute temporal self-attention. Args: x: Input tensor. Shape: [B, C, T, H, W]. chunk_size: Chunk size for large tensors. Returns: x: Output tensor. Shape: [B, C, T, H, W]. """ B, _, T, H, W = x.shape if T == 1: # No attention for single frame. x = x.movedim(1, -1) # [B, C, T, H, W] -> [B, T, H, W, C] qkv = self.qkv(x) _, _, x = qkv.chunk(3, dim=-1) # Throw away queries and keys. x = self.out(x) return x.movedim(-1, 1) # [B, T, H, W, C] -> [B, C, T, H, W] # 1D temporal attention. x = rearrange(x, "B C t h w -> (B h w) t C") qkv = self.qkv(x) # Input: qkv with shape [B, t, 3 * num_heads * head_dim] # Output: x with shape [B, num_heads, t, head_dim] q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, self.head_dim).transpose(1, 3).unbind(2) if self.qk_norm: q = F.normalize(q, p=2, dim=-1) k = F.normalize(k, p=2, dim=-1) x = optimized_attention(q, k, v, self.num_heads, skip_reshape=True) assert x.size(0) == q.size(0) x = self.out(x) x = rearrange(x, "(B h w) t C -> B C t h w", B=B, h=H, w=W) return x class AttentionBlock(nn.Module): def __init__( self, dim: int, **attn_kwargs, ) -> None: super().__init__() self.norm = norm_fn(dim) self.attn = Attention(dim, **attn_kwargs) def forward(self, x: torch.Tensor) -> torch.Tensor: return x + self.attn(self.norm(x)) class CausalUpsampleBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int, num_res_blocks: int, *, temporal_expansion: int = 2, spatial_expansion: int = 2, **block_kwargs, ): super().__init__() blocks = [] for _ in range(num_res_blocks): blocks.append(block_fn(in_channels, **block_kwargs)) self.blocks = nn.Sequential(*blocks) self.temporal_expansion = temporal_expansion self.spatial_expansion = spatial_expansion # Change channels in the final convolution layer. self.proj = Conv1x1( in_channels, out_channels * temporal_expansion * (spatial_expansion**2), ) self.d2st = DepthToSpaceTime( temporal_expansion=temporal_expansion, spatial_expansion=spatial_expansion ) def forward(self, x): x = self.blocks(x) x = self.proj(x) x = self.d2st(x) return x def block_fn(channels, *, affine: bool = True, has_attention: bool = False, **block_kwargs): attn_block = AttentionBlock(channels) if has_attention else None return ResBlock(channels, affine=affine, attn_block=attn_block, **block_kwargs) class DownsampleBlock(nn.Module): def __init__( self, in_channels: int, out_channels: int, num_res_blocks, *, temporal_reduction=2, spatial_reduction=2, **block_kwargs, ): """ Downsample block for the VAE encoder. Args: in_channels: Number of input channels. out_channels: Number of output channels. num_res_blocks: Number of residual blocks. temporal_reduction: Temporal reduction factor. spatial_reduction: Spatial reduction factor. """ super().__init__() layers = [] # Change the channel count in the strided convolution. # This lets the ResBlock have uniform channel count, # as in ConvNeXt. assert in_channels != out_channels layers.append( PConv3d( in_channels=in_channels, out_channels=out_channels, kernel_size=(temporal_reduction, spatial_reduction, spatial_reduction), stride=(temporal_reduction, spatial_reduction, spatial_reduction), # First layer in each block always uses replicate padding padding_mode="replicate", bias=block_kwargs["bias"], ) ) for _ in range(num_res_blocks): layers.append(block_fn(out_channels, **block_kwargs)) self.layers = nn.Sequential(*layers) def forward(self, x): return self.layers(x) def add_fourier_features(inputs: torch.Tensor, start=6, stop=8, step=1): num_freqs = (stop - start) // step assert inputs.ndim == 5 C = inputs.size(1) # Create Base 2 Fourier features. freqs = torch.arange(start, stop, step, dtype=inputs.dtype, device=inputs.device) assert num_freqs == len(freqs) w = torch.pow(2.0, freqs) * (2 * torch.pi) # [num_freqs] C = inputs.shape[1] w = w.repeat(C)[None, :, None, None, None] # [1, C * num_freqs, 1, 1, 1] # Interleaved repeat of input channels to match w. h = inputs.repeat_interleave(num_freqs, dim=1) # [B, C * num_freqs, T, H, W] # Scale channels by frequency. h = w * h return torch.cat( [ inputs, torch.sin(h), torch.cos(h), ], dim=1, ) class FourierFeatures(nn.Module): def __init__(self, start: int = 6, stop: int = 8, step: int = 1): super().__init__() self.start = start self.stop = stop self.step = step def forward(self, inputs): """Add Fourier features to inputs. Args: inputs: Input tensor. Shape: [B, C, T, H, W] Returns: h: Output tensor. Shape: [B, (1 + 2 * num_freqs) * C, T, H, W] """ return add_fourier_features(inputs, self.start, self.stop, self.step) class Decoder(nn.Module): def __init__( self, *, out_channels: int = 3, latent_dim: int, base_channels: int, channel_multipliers: List[int], num_res_blocks: List[int], temporal_expansions: Optional[List[int]] = None, spatial_expansions: Optional[List[int]] = None, has_attention: List[bool], output_norm: bool = True, nonlinearity: str = "silu", output_nonlinearity: str = "silu", causal: bool = True, **block_kwargs, ): super().__init__() self.input_channels = latent_dim self.base_channels = base_channels self.channel_multipliers = channel_multipliers self.num_res_blocks = num_res_blocks self.output_nonlinearity = output_nonlinearity assert nonlinearity == "silu" assert causal ch = [mult * base_channels for mult in channel_multipliers] self.num_up_blocks = len(ch) - 1 assert len(num_res_blocks) == self.num_up_blocks + 2 blocks = [] first_block = [ ops.Conv3d(latent_dim, ch[-1], kernel_size=(1, 1, 1)) ] # Input layer. # First set of blocks preserve channel count. for _ in range(num_res_blocks[-1]): first_block.append( block_fn( ch[-1], has_attention=has_attention[-1], causal=causal, **block_kwargs, ) ) blocks.append(nn.Sequential(*first_block)) assert len(temporal_expansions) == len(spatial_expansions) == self.num_up_blocks assert len(num_res_blocks) == len(has_attention) == self.num_up_blocks + 2 upsample_block_fn = CausalUpsampleBlock for i in range(self.num_up_blocks): block = upsample_block_fn( ch[-i - 1], ch[-i - 2], num_res_blocks=num_res_blocks[-i - 2], has_attention=has_attention[-i - 2], temporal_expansion=temporal_expansions[-i - 1], spatial_expansion=spatial_expansions[-i - 1], causal=causal, **block_kwargs, ) blocks.append(block) assert not output_norm # Last block. Preserve channel count. last_block = [] for _ in range(num_res_blocks[0]): last_block.append( block_fn( ch[0], has_attention=has_attention[0], causal=causal, **block_kwargs ) ) blocks.append(nn.Sequential(*last_block)) self.blocks = nn.ModuleList(blocks) self.output_proj = Conv1x1(ch[0], out_channels) def forward(self, x): """Forward pass. Args: x: Latent tensor. Shape: [B, input_channels, t, h, w]. Scaled [-1, 1]. Returns: x: Reconstructed video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1]. T + 1 = (t - 1) * 4. H = h * 16, W = w * 16. """ for block in self.blocks: x = block(x) if self.output_nonlinearity == "silu": x = F.silu(x, inplace=not self.training) else: assert ( not self.output_nonlinearity ) # StyleGAN3 omits the to-RGB nonlinearity. return self.output_proj(x).contiguous() class LatentDistribution: def __init__(self, mean: torch.Tensor, logvar: torch.Tensor): """Initialize latent distribution. Args: mean: Mean of the distribution. Shape: [B, C, T, H, W]. logvar: Logarithm of variance of the distribution. Shape: [B, C, T, H, W]. """ assert mean.shape == logvar.shape self.mean = mean self.logvar = logvar def sample(self, temperature=1.0, generator: torch.Generator = None, noise=None): if temperature == 0.0: return self.mean if noise is None: noise = torch.randn(self.mean.shape, device=self.mean.device, dtype=self.mean.dtype, generator=generator) else: assert noise.device == self.mean.device noise = noise.to(self.mean.dtype) if temperature != 1.0: raise NotImplementedError(f"Temperature {temperature} is not supported.") # Just Gaussian sample with no scaling of variance. return noise * torch.exp(self.logvar * 0.5) + self.mean def mode(self): return self.mean class Encoder(nn.Module): def __init__( self, *, in_channels: int, base_channels: int, channel_multipliers: List[int], num_res_blocks: List[int], latent_dim: int, temporal_reductions: List[int], spatial_reductions: List[int], prune_bottlenecks: List[bool], has_attentions: List[bool], affine: bool = True, bias: bool = True, input_is_conv_1x1: bool = False, padding_mode: str, ): super().__init__() self.temporal_reductions = temporal_reductions self.spatial_reductions = spatial_reductions self.base_channels = base_channels self.channel_multipliers = channel_multipliers self.num_res_blocks = num_res_blocks self.latent_dim = latent_dim self.fourier_features = FourierFeatures() ch = [mult * base_channels for mult in channel_multipliers] num_down_blocks = len(ch) - 1 assert len(num_res_blocks) == num_down_blocks + 2 layers = ( [ops.Conv3d(in_channels, ch[0], kernel_size=(1, 1, 1), bias=True)] if not input_is_conv_1x1 else [Conv1x1(in_channels, ch[0])] ) assert len(prune_bottlenecks) == num_down_blocks + 2 assert len(has_attentions) == num_down_blocks + 2 block = partial(block_fn, padding_mode=padding_mode, affine=affine, bias=bias) for _ in range(num_res_blocks[0]): layers.append(block(ch[0], has_attention=has_attentions[0], prune_bottleneck=prune_bottlenecks[0])) prune_bottlenecks = prune_bottlenecks[1:] has_attentions = has_attentions[1:] assert len(temporal_reductions) == len(spatial_reductions) == len(ch) - 1 for i in range(num_down_blocks): layer = DownsampleBlock( ch[i], ch[i + 1], num_res_blocks=num_res_blocks[i + 1], temporal_reduction=temporal_reductions[i], spatial_reduction=spatial_reductions[i], prune_bottleneck=prune_bottlenecks[i], has_attention=has_attentions[i], affine=affine, bias=bias, padding_mode=padding_mode, ) layers.append(layer) # Additional blocks. for _ in range(num_res_blocks[-1]): layers.append(block(ch[-1], has_attention=has_attentions[-1], prune_bottleneck=prune_bottlenecks[-1])) self.layers = nn.Sequential(*layers) # Output layers. self.output_norm = norm_fn(ch[-1]) self.output_proj = Conv1x1(ch[-1], 2 * latent_dim, bias=False) @property def temporal_downsample(self): return math.prod(self.temporal_reductions) @property def spatial_downsample(self): return math.prod(self.spatial_reductions) def forward(self, x) -> LatentDistribution: """Forward pass. Args: x: Input video tensor. Shape: [B, C, T, H, W]. Scaled to [-1, 1] Returns: means: Latent tensor. Shape: [B, latent_dim, t, h, w]. Scaled [-1, 1]. h = H // 8, w = W // 8, t - 1 = (T - 1) // 6 logvar: Shape: [B, latent_dim, t, h, w]. """ assert x.ndim == 5, f"Expected 5D input, got {x.shape}" x = self.fourier_features(x) x = self.layers(x) x = self.output_norm(x) x = F.silu(x, inplace=True) x = self.output_proj(x) means, logvar = torch.chunk(x, 2, dim=1) assert means.ndim == 5 assert logvar.shape == means.shape assert means.size(1) == self.latent_dim return LatentDistribution(means, logvar) class VideoVAE(nn.Module): def __init__(self): super().__init__() self.encoder = Encoder( in_channels=15, base_channels=64, channel_multipliers=[1, 2, 4, 6], num_res_blocks=[3, 3, 4, 6, 3], latent_dim=12, temporal_reductions=[1, 2, 3], spatial_reductions=[2, 2, 2], prune_bottlenecks=[False, False, False, False, False], has_attentions=[False, True, True, True, True], affine=True, bias=True, input_is_conv_1x1=True, padding_mode="replicate" ) self.decoder = Decoder( out_channels=3, base_channels=128, channel_multipliers=[1, 2, 4, 6], temporal_expansions=[1, 2, 3], spatial_expansions=[2, 2, 2], num_res_blocks=[3, 3, 4, 6, 3], latent_dim=12, has_attention=[False, False, False, False, False], padding_mode="replicate", output_norm=False, nonlinearity="silu", output_nonlinearity="silu", causal=True, ) def encode(self, x): return self.encoder(x).mode() def decode(self, x): return self.decoder(x)