""" This file is part of ComfyUI. Copyright (C) 2024 Comfy This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ from __future__ import annotations import comfy.utils import comfy.model_management import comfy.model_base import logging import torch LORA_CLIP_MAP = { "mlp.fc1": "mlp_fc1", "mlp.fc2": "mlp_fc2", "self_attn.k_proj": "self_attn_k_proj", "self_attn.q_proj": "self_attn_q_proj", "self_attn.v_proj": "self_attn_v_proj", "self_attn.out_proj": "self_attn_out_proj", } def load_lora(lora, to_load): patch_dict = {} loaded_keys = set() for x in to_load: alpha_name = "{}.alpha".format(x) alpha = None if alpha_name in lora.keys(): alpha = lora[alpha_name].item() loaded_keys.add(alpha_name) dora_scale_name = "{}.dora_scale".format(x) dora_scale = None if dora_scale_name in lora.keys(): dora_scale = lora[dora_scale_name] loaded_keys.add(dora_scale_name) regular_lora = "{}.lora_up.weight".format(x) diffusers_lora = "{}_lora.up.weight".format(x) diffusers2_lora = "{}.lora_B.weight".format(x) diffusers3_lora = "{}.lora.up.weight".format(x) transformers_lora = "{}.lora_linear_layer.up.weight".format(x) A_name = None if regular_lora in lora.keys(): A_name = regular_lora B_name = "{}.lora_down.weight".format(x) mid_name = "{}.lora_mid.weight".format(x) elif diffusers_lora in lora.keys(): A_name = diffusers_lora B_name = "{}_lora.down.weight".format(x) mid_name = None elif diffusers2_lora in lora.keys(): A_name = diffusers2_lora B_name = "{}.lora_A.weight".format(x) mid_name = None elif diffusers3_lora in lora.keys(): A_name = diffusers3_lora B_name = "{}.lora.down.weight".format(x) mid_name = None elif transformers_lora in lora.keys(): A_name = transformers_lora B_name ="{}.lora_linear_layer.down.weight".format(x) mid_name = None if A_name is not None: mid = None if mid_name is not None and mid_name in lora.keys(): mid = lora[mid_name] loaded_keys.add(mid_name) patch_dict[to_load[x]] = ("lora", (lora[A_name], lora[B_name], alpha, mid, dora_scale)) loaded_keys.add(A_name) loaded_keys.add(B_name) ######## loha hada_w1_a_name = "{}.hada_w1_a".format(x) hada_w1_b_name = "{}.hada_w1_b".format(x) hada_w2_a_name = "{}.hada_w2_a".format(x) hada_w2_b_name = "{}.hada_w2_b".format(x) hada_t1_name = "{}.hada_t1".format(x) hada_t2_name = "{}.hada_t2".format(x) if hada_w1_a_name in lora.keys(): hada_t1 = None hada_t2 = None if hada_t1_name in lora.keys(): hada_t1 = lora[hada_t1_name] hada_t2 = lora[hada_t2_name] loaded_keys.add(hada_t1_name) loaded_keys.add(hada_t2_name) patch_dict[to_load[x]] = ("loha", (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale)) loaded_keys.add(hada_w1_a_name) loaded_keys.add(hada_w1_b_name) loaded_keys.add(hada_w2_a_name) loaded_keys.add(hada_w2_b_name) ######## lokr lokr_w1_name = "{}.lokr_w1".format(x) lokr_w2_name = "{}.lokr_w2".format(x) lokr_w1_a_name = "{}.lokr_w1_a".format(x) lokr_w1_b_name = "{}.lokr_w1_b".format(x) lokr_t2_name = "{}.lokr_t2".format(x) lokr_w2_a_name = "{}.lokr_w2_a".format(x) lokr_w2_b_name = "{}.lokr_w2_b".format(x) lokr_w1 = None if lokr_w1_name in lora.keys(): lokr_w1 = lora[lokr_w1_name] loaded_keys.add(lokr_w1_name) lokr_w2 = None if lokr_w2_name in lora.keys(): lokr_w2 = lora[lokr_w2_name] loaded_keys.add(lokr_w2_name) lokr_w1_a = None if lokr_w1_a_name in lora.keys(): lokr_w1_a = lora[lokr_w1_a_name] loaded_keys.add(lokr_w1_a_name) lokr_w1_b = None if lokr_w1_b_name in lora.keys(): lokr_w1_b = lora[lokr_w1_b_name] loaded_keys.add(lokr_w1_b_name) lokr_w2_a = None if lokr_w2_a_name in lora.keys(): lokr_w2_a = lora[lokr_w2_a_name] loaded_keys.add(lokr_w2_a_name) lokr_w2_b = None if lokr_w2_b_name in lora.keys(): lokr_w2_b = lora[lokr_w2_b_name] loaded_keys.add(lokr_w2_b_name) lokr_t2 = None if lokr_t2_name in lora.keys(): lokr_t2 = lora[lokr_t2_name] loaded_keys.add(lokr_t2_name) if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None): patch_dict[to_load[x]] = ("lokr", (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale)) #glora a1_name = "{}.a1.weight".format(x) a2_name = "{}.a2.weight".format(x) b1_name = "{}.b1.weight".format(x) b2_name = "{}.b2.weight".format(x) if a1_name in lora: patch_dict[to_load[x]] = ("glora", (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale)) loaded_keys.add(a1_name) loaded_keys.add(a2_name) loaded_keys.add(b1_name) loaded_keys.add(b2_name) w_norm_name = "{}.w_norm".format(x) b_norm_name = "{}.b_norm".format(x) w_norm = lora.get(w_norm_name, None) b_norm = lora.get(b_norm_name, None) if w_norm is not None: loaded_keys.add(w_norm_name) patch_dict[to_load[x]] = ("diff", (w_norm,)) if b_norm is not None: loaded_keys.add(b_norm_name) patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (b_norm,)) diff_name = "{}.diff".format(x) diff_weight = lora.get(diff_name, None) if diff_weight is not None: patch_dict[to_load[x]] = ("diff", (diff_weight,)) loaded_keys.add(diff_name) diff_bias_name = "{}.diff_b".format(x) diff_bias = lora.get(diff_bias_name, None) if diff_bias is not None: patch_dict["{}.bias".format(to_load[x][:-len(".weight")])] = ("diff", (diff_bias,)) loaded_keys.add(diff_bias_name) for x in lora.keys(): if x not in loaded_keys: logging.warning("lora key not loaded: {}".format(x)) return patch_dict def model_lora_keys_clip(model, key_map={}): sdk = model.state_dict().keys() for k in sdk: if k.endswith(".weight"): key_map["text_encoders.{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names text_model_lora_key = "lora_te_text_model_encoder_layers_{}_{}" clip_l_present = False clip_g_present = False for b in range(32): #TODO: clean up for c in LORA_CLIP_MAP: k = "clip_h.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) if k in sdk: lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) key_map[lora_key] = k lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) key_map[lora_key] = k lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora key_map[lora_key] = k k = "clip_l.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) if k in sdk: lora_key = text_model_lora_key.format(b, LORA_CLIP_MAP[c]) key_map[lora_key] = k lora_key = "lora_te1_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base key_map[lora_key] = k clip_l_present = True lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora key_map[lora_key] = k k = "clip_g.transformer.text_model.encoder.layers.{}.{}.weight".format(b, c) if k in sdk: clip_g_present = True if clip_l_present: lora_key = "lora_te2_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #SDXL base key_map[lora_key] = k lora_key = "text_encoder_2.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora key_map[lora_key] = k else: lora_key = "lora_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #TODO: test if this is correct for SDXL-Refiner key_map[lora_key] = k lora_key = "text_encoder.text_model.encoder.layers.{}.{}".format(b, c) #diffusers lora key_map[lora_key] = k lora_key = "lora_prior_te_text_model_encoder_layers_{}_{}".format(b, LORA_CLIP_MAP[c]) #cascade lora: TODO put lora key prefix in the model config key_map[lora_key] = k for k in sdk: if k.endswith(".weight"): if k.startswith("t5xxl.transformer."):#OneTrainer SD3 and Flux lora l_key = k[len("t5xxl.transformer."):-len(".weight")] t5_index = 1 if clip_g_present: t5_index += 1 if clip_l_present: t5_index += 1 if t5_index == 2: key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k #OneTrainer Flux t5_index += 1 key_map["lora_te{}_{}".format(t5_index, l_key.replace(".", "_"))] = k elif k.startswith("hydit_clip.transformer.bert."): #HunyuanDiT Lora l_key = k[len("hydit_clip.transformer.bert."):-len(".weight")] lora_key = "lora_te1_{}".format(l_key.replace(".", "_")) key_map[lora_key] = k k = "clip_g.transformer.text_projection.weight" if k in sdk: key_map["lora_prior_te_text_projection"] = k #cascade lora? # key_map["text_encoder.text_projection"] = k #TODO: check if other lora have the text_projection too key_map["lora_te2_text_projection"] = k #OneTrainer SD3 lora k = "clip_l.transformer.text_projection.weight" if k in sdk: key_map["lora_te1_text_projection"] = k #OneTrainer SD3 lora, not necessary but omits warning return key_map def model_lora_keys_unet(model, key_map={}): sd = model.state_dict() sdk = sd.keys() for k in sdk: if k.startswith("diffusion_model.") and k.endswith(".weight"): key_lora = k[len("diffusion_model."):-len(".weight")].replace(".", "_") key_map["lora_unet_{}".format(key_lora)] = k key_map["lora_prior_unet_{}".format(key_lora)] = k #cascade lora: TODO put lora key prefix in the model config key_map["{}".format(k[:-len(".weight")])] = k #generic lora format without any weird key names diffusers_keys = comfy.utils.unet_to_diffusers(model.model_config.unet_config) for k in diffusers_keys: if k.endswith(".weight"): unet_key = "diffusion_model.{}".format(diffusers_keys[k]) key_lora = k[:-len(".weight")].replace(".", "_") key_map["lora_unet_{}".format(key_lora)] = unet_key key_map["lycoris_{}".format(key_lora)] = unet_key #simpletuner lycoris format diffusers_lora_prefix = ["", "unet."] for p in diffusers_lora_prefix: diffusers_lora_key = "{}{}".format(p, k[:-len(".weight")].replace(".to_", ".processor.to_")) if diffusers_lora_key.endswith(".to_out.0"): diffusers_lora_key = diffusers_lora_key[:-2] key_map[diffusers_lora_key] = unet_key if isinstance(model, comfy.model_base.SD3): #Diffusers lora SD3 diffusers_keys = comfy.utils.mmdit_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") for k in diffusers_keys: if k.endswith(".weight"): to = diffusers_keys[k] key_lora = "transformer.{}".format(k[:-len(".weight")]) #regular diffusers sd3 lora format key_map[key_lora] = to key_lora = "base_model.model.{}".format(k[:-len(".weight")]) #format for flash-sd3 lora and others? key_map[key_lora] = to key_lora = "lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_")) #OneTrainer lora key_map[key_lora] = to key_lora = "lycoris_{}".format(k[:-len(".weight")].replace(".", "_")) #simpletuner lycoris format key_map[key_lora] = to if isinstance(model, comfy.model_base.AuraFlow): #Diffusers lora AuraFlow diffusers_keys = comfy.utils.auraflow_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") for k in diffusers_keys: if k.endswith(".weight"): to = diffusers_keys[k] key_lora = "transformer.{}".format(k[:-len(".weight")]) #simpletrainer and probably regular diffusers lora format key_map[key_lora] = to if isinstance(model, comfy.model_base.HunyuanDiT): for k in sdk: if k.startswith("diffusion_model.") and k.endswith(".weight"): key_lora = k[len("diffusion_model."):-len(".weight")] key_map["base_model.model.{}".format(key_lora)] = k #official hunyuan lora format if isinstance(model, comfy.model_base.Flux): #Diffusers lora Flux diffusers_keys = comfy.utils.flux_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.") for k in diffusers_keys: if k.endswith(".weight"): to = diffusers_keys[k] key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer return key_map def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function): dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype) lora_diff *= alpha weight_calc = weight + function(lora_diff).type(weight.dtype) weight_norm = ( weight_calc.transpose(0, 1) .reshape(weight_calc.shape[1], -1) .norm(dim=1, keepdim=True) .reshape(weight_calc.shape[1], *[1] * (weight_calc.dim() - 1)) .transpose(0, 1) ) weight_calc *= (dora_scale / weight_norm).type(weight.dtype) if strength != 1.0: weight_calc -= weight weight += strength * (weight_calc) else: weight[:] = weight_calc return weight def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Tensor: """ Pad a tensor to a new shape with zeros. Args: tensor (torch.Tensor): The original tensor to be padded. new_shape (List[int]): The desired shape of the padded tensor. Returns: torch.Tensor: A new tensor padded with zeros to the specified shape. Note: If the new shape is smaller than the original tensor in any dimension, the original tensor will be truncated in that dimension. """ if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]): raise ValueError("The new shape must be larger than the original tensor in all dimensions") if len(new_shape) != len(tensor.shape): raise ValueError("The new shape must have the same number of dimensions as the original tensor") # Create a new tensor filled with zeros padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device) # Create slicing tuples for both tensors orig_slices = tuple(slice(0, dim) for dim in tensor.shape) new_slices = tuple(slice(0, dim) for dim in tensor.shape) # Copy the original tensor into the new tensor padded_tensor[new_slices] = tensor[orig_slices] return padded_tensor def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32): for p in patches: strength = p[0] v = p[1] strength_model = p[2] offset = p[3] function = p[4] if function is None: function = lambda a: a old_weight = None if offset is not None: old_weight = weight weight = weight.narrow(offset[0], offset[1], offset[2]) if strength_model != 1.0: weight *= strength_model if isinstance(v, list): v = (calculate_weight(v[1:], v[0][1](comfy.model_management.cast_to_device(v[0][0], weight.device, intermediate_dtype, copy=True), inplace=True), key, intermediate_dtype=intermediate_dtype), ) if len(v) == 1: patch_type = "diff" elif len(v) == 2: patch_type = v[0] v = v[1] if patch_type == "diff": diff: torch.Tensor = v[0] # An extra flag to pad the weight if the diff's shape is larger than the weight do_pad_weight = len(v) > 1 and v[1]['pad_weight'] if do_pad_weight and diff.shape != weight.shape: logging.info("Pad weight {} from {} to shape: {}".format(key, weight.shape, diff.shape)) weight = pad_tensor_to_shape(weight, diff.shape) if strength != 0.0: if diff.shape != weight.shape: logging.warning("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, diff.shape, weight.shape)) else: weight += function(strength * comfy.model_management.cast_to_device(diff, weight.device, weight.dtype)) elif patch_type == "lora": #lora/locon mat1 = comfy.model_management.cast_to_device(v[0], weight.device, intermediate_dtype) mat2 = comfy.model_management.cast_to_device(v[1], weight.device, intermediate_dtype) dora_scale = v[4] if v[2] is not None: alpha = v[2] / mat2.shape[0] else: alpha = 1.0 if v[3] is not None: #locon mid weights, hopefully the math is fine because I didn't properly test it mat3 = comfy.model_management.cast_to_device(v[3], weight.device, intermediate_dtype) final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) try: lora_diff = torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1)).reshape(weight.shape) if dora_scale is not None: weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function) else: weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) except Exception as e: logging.error("ERROR {} {} {}".format(patch_type, key, e)) elif patch_type == "lokr": w1 = v[0] w2 = v[1] w1_a = v[3] w1_b = v[4] w2_a = v[5] w2_b = v[6] t2 = v[7] dora_scale = v[8] dim = None if w1 is None: dim = w1_b.shape[0] w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype), comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype)) else: w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype) if w2 is None: dim = w2_b.shape[0] if t2 is None: w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype), comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype)) else: w2 = torch.einsum('i j k l, j r, i p -> p r k l', comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype), comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype), comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype)) else: w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype) if len(w2.shape) == 4: w1 = w1.unsqueeze(2).unsqueeze(2) if v[2] is not None and dim is not None: alpha = v[2] / dim else: alpha = 1.0 try: lora_diff = torch.kron(w1, w2).reshape(weight.shape) if dora_scale is not None: weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function) else: weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) except Exception as e: logging.error("ERROR {} {} {}".format(patch_type, key, e)) elif patch_type == "loha": w1a = v[0] w1b = v[1] if v[2] is not None: alpha = v[2] / w1b.shape[0] else: alpha = 1.0 w2a = v[3] w2b = v[4] dora_scale = v[7] if v[5] is not None: #cp decomposition t1 = v[5] t2 = v[6] m1 = torch.einsum('i j k l, j r, i p -> p r k l', comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype), comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype), comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype)) m2 = torch.einsum('i j k l, j r, i p -> p r k l', comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype), comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype), comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype)) else: m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype), comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype)) m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype), comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype)) try: lora_diff = (m1 * m2).reshape(weight.shape) if dora_scale is not None: weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function) else: weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) except Exception as e: logging.error("ERROR {} {} {}".format(patch_type, key, e)) elif patch_type == "glora": dora_scale = v[5] old_glora = False if v[3].shape[1] == v[2].shape[0] == v[0].shape[0] == v[1].shape[1]: rank = v[0].shape[0] old_glora = True if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]: if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]: pass else: old_glora = False rank = v[1].shape[0] a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype) a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype) b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype) b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype) if v[4] is not None: alpha = v[4] / rank else: alpha = 1.0 try: if old_glora: lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora else: if weight.dim() > 2: lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape) else: lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape) lora_diff += torch.mm(b1, b2).reshape(weight.shape) if dora_scale is not None: weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function) else: weight += function(((strength * alpha) * lora_diff).type(weight.dtype)) except Exception as e: logging.error("ERROR {} {} {}".format(patch_type, key, e)) else: logging.warning("patch type not recognized {} {}".format(patch_type, key)) if old_weight is not None: weight = old_weight return weight