from transformers import CLIPVisionModelWithProjection, CLIPVisionConfig, CLIPImageProcessor, modeling_utils from .utils import load_torch_file, transformers_convert import os import torch import comfy.ops class ClipVisionModel(): def __init__(self, json_config): config = CLIPVisionConfig.from_json_file(json_config) with comfy.ops.use_comfy_ops(): with modeling_utils.no_init_weights(): self.model = CLIPVisionModelWithProjection(config) self.processor = CLIPImageProcessor(crop_size=224, do_center_crop=True, do_convert_rgb=True, do_normalize=True, do_resize=True, image_mean=[ 0.48145466,0.4578275,0.40821073], image_std=[0.26862954,0.26130258,0.27577711], resample=3, #bicubic size=224) def load_sd(self, sd): return self.model.load_state_dict(sd, strict=False) def encode_image(self, image): img = torch.clip((255. * image), 0, 255).round().int() if len(img.shape) == 3: img = [img] inputs = self.processor(images=img, return_tensors="pt") outputs = self.model(**inputs) return outputs def convert_to_transformers(sd, prefix): sd_k = sd.keys() if "{}transformer.resblocks.0.attn.in_proj_weight".format(prefix) in sd_k: keys_to_replace = { "{}class_embedding".format(prefix): "vision_model.embeddings.class_embedding", "{}conv1.weight".format(prefix): "vision_model.embeddings.patch_embedding.weight", "{}positional_embedding".format(prefix): "vision_model.embeddings.position_embedding.weight", "{}ln_post.bias".format(prefix): "vision_model.post_layernorm.bias", "{}ln_post.weight".format(prefix): "vision_model.post_layernorm.weight", "{}ln_pre.bias".format(prefix): "vision_model.pre_layrnorm.bias", "{}ln_pre.weight".format(prefix): "vision_model.pre_layrnorm.weight", } for x in keys_to_replace: if x in sd_k: sd[keys_to_replace[x]] = sd.pop(x) if "{}proj".format(prefix) in sd_k: sd['visual_projection.weight'] = sd.pop("{}proj".format(prefix)).transpose(0, 1) sd = transformers_convert(sd, prefix, "vision_model.", 32) return sd def load_clipvision_from_sd(sd, prefix="", convert_keys=False): if convert_keys: sd = convert_to_transformers(sd, prefix) if "vision_model.encoder.layers.30.layer_norm1.weight" in sd: json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_h.json") else: json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl.json") clip = ClipVisionModel(json_config) m, u = clip.load_sd(sd) u = set(u) keys = list(sd.keys()) for k in keys: if k not in u: t = sd.pop(k) del t return clip def load(ckpt_path): sd = load_torch_file(ckpt_path) return load_clipvision_from_sd(sd)