import os from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextConfig import torch class ClipTokenWeightEncoder: def encode_token_weights(self, token_weight_pairs): z_empty = self.encode(self.empty_tokens) output = [] for x in token_weight_pairs: tokens = [list(map(lambda a: a[0], x))] z = self.encode(tokens) for i in range(len(z)): for j in range(len(z[i])): weight = x[j][1] z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j] output += [z] if (len(output) == 0): return self.encode(self.empty_tokens) return torch.cat(output, dim=-2) class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder): """Uses the CLIP transformer encoder for text (from huggingface)""" LAYERS = [ "last", "pooled", "hidden" ] def __init__(self, version="openai/clip-vit-large-patch14", device="cpu", max_length=77, freeze=True, layer="last", layer_idx=None, textmodel_json_config=None, textmodel_path=None): # clip-vit-base-patch32 super().__init__() assert layer in self.LAYERS if textmodel_path is not None: self.transformer = CLIPTextModel.from_pretrained(textmodel_path) else: if textmodel_json_config is None: textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json") config = CLIPTextConfig.from_json_file(textmodel_json_config) self.transformer = CLIPTextModel(config) self.device = device self.max_length = max_length if freeze: self.freeze() self.layer = layer self.layer_idx = None self.empty_tokens = [[49406] + [49407] * 76] if layer == "hidden": assert layer_idx is not None assert abs(layer_idx) <= 12 self.clip_layer(layer_idx) def freeze(self): self.transformer = self.transformer.eval() #self.train = disabled_train for param in self.parameters(): param.requires_grad = False def clip_layer(self, layer_idx): if abs(layer_idx) >= 12: self.layer = "last" else: self.layer = "hidden" self.layer_idx = layer_idx def forward(self, tokens): tokens = torch.LongTensor(tokens).to(self.device) outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden") if self.layer == "last": z = outputs.last_hidden_state elif self.layer == "pooled": z = outputs.pooler_output[:, None, :] else: z = outputs.hidden_states[self.layer_idx] z = self.transformer.text_model.final_layer_norm(z) return z def encode(self, tokens): return self(tokens) def parse_parentheses(string): result = [] current_item = "" nesting_level = 0 for char in string: if char == "(": if nesting_level == 0: if current_item: result.append(current_item) current_item = "(" else: current_item = "(" else: current_item += char nesting_level += 1 elif char == ")": nesting_level -= 1 if nesting_level == 0: result.append(current_item + ")") current_item = "" else: current_item += char else: current_item += char if current_item: result.append(current_item) return result def token_weights(string, current_weight): a = parse_parentheses(string) out = [] for x in a: weight = current_weight if len(x) >= 2 and x[-1] == ')' and x[0] == '(': x = x[1:-1] xx = x.rfind(":") weight *= 1.1 if xx > 0: try: weight = float(x[xx+1:]) x = x[:xx] except: pass out += token_weights(x, weight) else: out += [(x, current_weight)] return out def escape_important(text): text = text.replace("\\)", "\0\1") text = text.replace("\\(", "\0\2") return text def unescape_important(text): text = text.replace("\0\1", ")") text = text.replace("\0\2", "(") return text class SD1Tokenizer: def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True): if tokenizer_path is None: tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer") self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer_path) self.max_length = max_length empty = self.tokenizer('')["input_ids"] self.start_token = empty[0] self.end_token = empty[1] self.pad_with_end = pad_with_end vocab = self.tokenizer.get_vocab() self.inv_vocab = {v: k for k, v in vocab.items()} def tokenize_with_weights(self, text): text = escape_important(text) parsed_weights = token_weights(text, 1.0) tokens = [] for t in parsed_weights: tt = self.tokenizer(unescape_important(t[0]))["input_ids"][1:-1] for x in tt: tokens += [(x, t[1])] out_tokens = [] for x in range(0, len(tokens), self.max_length - 2): o_token = [(self.start_token, 1.0)] + tokens[x:min(self.max_length - 2 + x, len(tokens))] o_token += [(self.end_token, 1.0)] if self.pad_with_end: o_token +=[(self.end_token, 1.0)] * (self.max_length - len(o_token)) else: o_token +=[(0, 1.0)] * (self.max_length - len(o_token)) out_tokens += [o_token] return out_tokens def untokenize(self, token_weight_pair): return list(map(lambda a: (a, self.inv_vocab[a[0]]), token_weight_pair))