import math import torch from torch import nn from . import sampling, utils class VDenoiser(nn.Module): """A v-diffusion-pytorch model wrapper for k-diffusion.""" def __init__(self, inner_model): super().__init__() self.inner_model = inner_model self.sigma_data = 1. def get_scalings(self, sigma): c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) c_out = -sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 return c_skip, c_out, c_in def sigma_to_t(self, sigma): return sigma.atan() / math.pi * 2 def t_to_sigma(self, t): return (t * math.pi / 2).tan() def loss(self, input, noise, sigma, **kwargs): c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)] noised_input = input + noise * utils.append_dims(sigma, input.ndim) model_output = self.inner_model(noised_input * c_in, self.sigma_to_t(sigma), **kwargs) target = (input - c_skip * noised_input) / c_out return (model_output - target).pow(2).flatten(1).mean(1) def forward(self, input, sigma, **kwargs): c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)] return self.inner_model(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip class DiscreteSchedule(nn.Module): """A mapping between continuous noise levels (sigmas) and a list of discrete noise levels.""" def __init__(self, sigmas, quantize): super().__init__() self.register_buffer('sigmas', sigmas) self.register_buffer('log_sigmas', sigmas.log()) self.quantize = quantize @property def sigma_min(self): return self.sigmas[0] @property def sigma_max(self): return self.sigmas[-1] def get_sigmas(self, n=None): if n is None: return sampling.append_zero(self.sigmas.flip(0)) t_max = len(self.sigmas) - 1 t = torch.linspace(t_max, 0, n, device=self.sigmas.device) return sampling.append_zero(self.t_to_sigma(t)) def sigma_to_t(self, sigma, quantize=None): quantize = self.quantize if quantize is None else quantize log_sigma = sigma.log() dists = log_sigma - self.log_sigmas[:, None] if quantize: return dists.abs().argmin(dim=0).view(sigma.shape) low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(max=self.log_sigmas.shape[0] - 2) high_idx = low_idx + 1 low, high = self.log_sigmas[low_idx], self.log_sigmas[high_idx] w = (low - log_sigma) / (low - high) w = w.clamp(0, 1) t = (1 - w) * low_idx + w * high_idx return t.view(sigma.shape) def t_to_sigma(self, t): t = t.float() low_idx = t.floor().long() high_idx = t.ceil().long() w = t-low_idx if t.device.type == 'mps' else t.frac() log_sigma = (1 - w) * self.log_sigmas[low_idx] + w * self.log_sigmas[high_idx] return log_sigma.exp() class DiscreteEpsDDPMDenoiser(DiscreteSchedule): """A wrapper for discrete schedule DDPM models that output eps (the predicted noise).""" def __init__(self, model, alphas_cumprod, quantize): super().__init__(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, quantize) self.inner_model = model self.sigma_data = 1. def get_scalings(self, sigma): c_out = -sigma c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 return c_out, c_in def get_eps(self, *args, **kwargs): return self.inner_model(*args, **kwargs) def loss(self, input, noise, sigma, **kwargs): c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)] noised_input = input + noise * utils.append_dims(sigma, input.ndim) eps = self.get_eps(noised_input * c_in, self.sigma_to_t(sigma), **kwargs) return (eps - noise).pow(2).flatten(1).mean(1) def forward(self, input, sigma, **kwargs): c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)] eps = self.get_eps(input * c_in, self.sigma_to_t(sigma), **kwargs) return input + eps * c_out class OpenAIDenoiser(DiscreteEpsDDPMDenoiser): """A wrapper for OpenAI diffusion models.""" def __init__(self, model, diffusion, quantize=False, has_learned_sigmas=True, device='cpu'): alphas_cumprod = torch.tensor(diffusion.alphas_cumprod, device=device, dtype=torch.float32) super().__init__(model, alphas_cumprod, quantize=quantize) self.has_learned_sigmas = has_learned_sigmas def get_eps(self, *args, **kwargs): model_output = self.inner_model(*args, **kwargs) if self.has_learned_sigmas: return model_output.chunk(2, dim=1)[0] return model_output class CompVisDenoiser(DiscreteEpsDDPMDenoiser): """A wrapper for CompVis diffusion models.""" def __init__(self, model, quantize=False, device='cpu'): super().__init__(model, model.alphas_cumprod, quantize=quantize) def get_eps(self, *args, **kwargs): return self.inner_model.apply_model(*args, **kwargs) class DiscreteVDDPMDenoiser(DiscreteSchedule): """A wrapper for discrete schedule DDPM models that output v.""" def __init__(self, model, alphas_cumprod, quantize): super().__init__(((1 - alphas_cumprod) / alphas_cumprod) ** 0.5, quantize) self.inner_model = model self.sigma_data = 1. def get_scalings(self, sigma): c_skip = self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) c_out = -sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 c_in = 1 / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 return c_skip, c_out, c_in def get_v(self, *args, **kwargs): return self.inner_model(*args, **kwargs) def loss(self, input, noise, sigma, **kwargs): c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)] noised_input = input + noise * utils.append_dims(sigma, input.ndim) model_output = self.get_v(noised_input * c_in, self.sigma_to_t(sigma), **kwargs) target = (input - c_skip * noised_input) / c_out return (model_output - target).pow(2).flatten(1).mean(1) def forward(self, input, sigma, **kwargs): c_skip, c_out, c_in = [utils.append_dims(x, input.ndim) for x in self.get_scalings(sigma)] return self.get_v(input * c_in, self.sigma_to_t(sigma), **kwargs) * c_out + input * c_skip class CompVisVDenoiser(DiscreteVDDPMDenoiser): """A wrapper for CompVis diffusion models that output v.""" def __init__(self, model, quantize=False, device='cpu'): super().__init__(model, model.alphas_cumprod, quantize=quantize) def get_v(self, x, t, cond, **kwargs): return self.inner_model.apply_model(x, t, cond)