#original code from https://github.com/genmoai/models under apache 2.0 license #adapted to ComfyUI from typing import Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F def modulate(x, shift, scale): return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) def pool_tokens(x: torch.Tensor, mask: torch.Tensor, *, keepdim=False) -> torch.Tensor: """ Pool tokens in x using mask. NOTE: We assume x does not require gradients. Args: x: (B, L, D) tensor of tokens. mask: (B, L) boolean tensor indicating which tokens are not padding. Returns: pooled: (B, D) tensor of pooled tokens. """ assert x.size(1) == mask.size(1) # Expected mask to have same length as tokens. assert x.size(0) == mask.size(0) # Expected mask to have same batch size as tokens. mask = mask[:, :, None].to(dtype=x.dtype) mask = mask / mask.sum(dim=1, keepdim=True).clamp(min=1) pooled = (x * mask).sum(dim=1, keepdim=keepdim) return pooled class AttentionPool(nn.Module): def __init__( self, embed_dim: int, num_heads: int, output_dim: int = None, device: Optional[torch.device] = None, dtype=None, operations=None, ): """ Args: spatial_dim (int): Number of tokens in sequence length. embed_dim (int): Dimensionality of input tokens. num_heads (int): Number of attention heads. output_dim (int): Dimensionality of output tokens. Defaults to embed_dim. """ super().__init__() self.num_heads = num_heads self.to_kv = operations.Linear(embed_dim, 2 * embed_dim, device=device, dtype=dtype) self.to_q = operations.Linear(embed_dim, embed_dim, device=device, dtype=dtype) self.to_out = operations.Linear(embed_dim, output_dim or embed_dim, device=device, dtype=dtype) def forward(self, x, mask): """ Args: x (torch.Tensor): (B, L, D) tensor of input tokens. mask (torch.Tensor): (B, L) boolean tensor indicating which tokens are not padding. NOTE: We assume x does not require gradients. Returns: x (torch.Tensor): (B, D) tensor of pooled tokens. """ D = x.size(2) # Construct attention mask, shape: (B, 1, num_queries=1, num_keys=1+L). attn_mask = mask[:, None, None, :].bool() # (B, 1, 1, L). attn_mask = F.pad(attn_mask, (1, 0), value=True) # (B, 1, 1, 1+L). # Average non-padding token features. These will be used as the query. x_pool = pool_tokens(x, mask, keepdim=True) # (B, 1, D) # Concat pooled features to input sequence. x = torch.cat([x_pool, x], dim=1) # (B, L+1, D) # Compute queries, keys, values. Only the mean token is used to create a query. kv = self.to_kv(x) # (B, L+1, 2 * D) q = self.to_q(x[:, 0]) # (B, D) # Extract heads. head_dim = D // self.num_heads kv = kv.unflatten(2, (2, self.num_heads, head_dim)) # (B, 1+L, 2, H, head_dim) kv = kv.transpose(1, 3) # (B, H, 2, 1+L, head_dim) k, v = kv.unbind(2) # (B, H, 1+L, head_dim) q = q.unflatten(1, (self.num_heads, head_dim)) # (B, H, head_dim) q = q.unsqueeze(2) # (B, H, 1, head_dim) # Compute attention. x = F.scaled_dot_product_attention( q, k, v, attn_mask=attn_mask, dropout_p=0.0 ) # (B, H, 1, head_dim) # Concatenate heads and run output. x = x.squeeze(2).flatten(1, 2) # (B, D = H * head_dim) x = self.to_out(x) return x