#original code from https://github.com/genmoai/models under apache 2.0 license #adapted to ComfyUI from typing import Dict, List, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from einops import rearrange # from flash_attn import flash_attn_varlen_qkvpacked_func from comfy.ldm.modules.attention import optimized_attention from .layers import ( FeedForward, PatchEmbed, RMSNorm, TimestepEmbedder, ) from .rope_mixed import ( compute_mixed_rotation, create_position_matrix, ) from .temporal_rope import apply_rotary_emb_qk_real from .utils import ( AttentionPool, modulate, ) import comfy.ldm.common_dit import comfy.ops def modulated_rmsnorm(x, scale, eps=1e-6): # Normalize and modulate x_normed = comfy.ldm.common_dit.rms_norm(x, eps=eps) x_modulated = x_normed * (1 + scale.unsqueeze(1)) return x_modulated def residual_tanh_gated_rmsnorm(x, x_res, gate, eps=1e-6): # Apply tanh to gate tanh_gate = torch.tanh(gate).unsqueeze(1) # Normalize and apply gated scaling x_normed = comfy.ldm.common_dit.rms_norm(x_res, eps=eps) * tanh_gate # Apply residual connection output = x + x_normed return output class AsymmetricAttention(nn.Module): def __init__( self, dim_x: int, dim_y: int, num_heads: int = 8, qkv_bias: bool = True, qk_norm: bool = False, attn_drop: float = 0.0, update_y: bool = True, out_bias: bool = True, attend_to_padding: bool = False, softmax_scale: Optional[float] = None, device: Optional[torch.device] = None, dtype=None, operations=None, ): super().__init__() self.dim_x = dim_x self.dim_y = dim_y self.num_heads = num_heads self.head_dim = dim_x // num_heads self.attn_drop = attn_drop self.update_y = update_y self.attend_to_padding = attend_to_padding self.softmax_scale = softmax_scale if dim_x % num_heads != 0: raise ValueError( f"dim_x={dim_x} should be divisible by num_heads={num_heads}" ) # Input layers. self.qkv_bias = qkv_bias self.qkv_x = operations.Linear(dim_x, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype) # Project text features to match visual features (dim_y -> dim_x) self.qkv_y = operations.Linear(dim_y, 3 * dim_x, bias=qkv_bias, device=device, dtype=dtype) # Query and key normalization for stability. assert qk_norm self.q_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype) self.k_norm_x = RMSNorm(self.head_dim, device=device, dtype=dtype) self.q_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype) self.k_norm_y = RMSNorm(self.head_dim, device=device, dtype=dtype) # Output layers. y features go back down from dim_x -> dim_y. self.proj_x = operations.Linear(dim_x, dim_x, bias=out_bias, device=device, dtype=dtype) self.proj_y = ( operations.Linear(dim_x, dim_y, bias=out_bias, device=device, dtype=dtype) if update_y else nn.Identity() ) def forward( self, x: torch.Tensor, # (B, N, dim_x) y: torch.Tensor, # (B, L, dim_y) scale_x: torch.Tensor, # (B, dim_x), modulation for pre-RMSNorm. scale_y: torch.Tensor, # (B, dim_y), modulation for pre-RMSNorm. crop_y, **rope_rotation, ) -> Tuple[torch.Tensor, torch.Tensor]: rope_cos = rope_rotation.get("rope_cos") rope_sin = rope_rotation.get("rope_sin") # Pre-norm for visual features x = modulated_rmsnorm(x, scale_x) # (B, M, dim_x) where M = N / cp_group_size # Process visual features # qkv_x = self.qkv_x(x) # (B, M, 3 * dim_x) # assert qkv_x.dtype == torch.bfloat16 # qkv_x = all_to_all_collect_tokens( # qkv_x, self.num_heads # ) # (3, B, N, local_h, head_dim) # Process text features y = modulated_rmsnorm(y, scale_y) # (B, L, dim_y) q_y, k_y, v_y = self.qkv_y(y).view(y.shape[0], y.shape[1], 3, self.num_heads, -1).unbind(2) # (B, N, local_h, head_dim) q_y = self.q_norm_y(q_y) k_y = self.k_norm_y(k_y) # Split qkv_x into q, k, v q_x, k_x, v_x = self.qkv_x(x).view(x.shape[0], x.shape[1], 3, self.num_heads, -1).unbind(2) # (B, N, local_h, head_dim) q_x = self.q_norm_x(q_x) q_x = apply_rotary_emb_qk_real(q_x, rope_cos, rope_sin) k_x = self.k_norm_x(k_x) k_x = apply_rotary_emb_qk_real(k_x, rope_cos, rope_sin) q = torch.cat([q_x, q_y[:, :crop_y]], dim=1).transpose(1, 2) k = torch.cat([k_x, k_y[:, :crop_y]], dim=1).transpose(1, 2) v = torch.cat([v_x, v_y[:, :crop_y]], dim=1).transpose(1, 2) xy = optimized_attention(q, k, v, self.num_heads, skip_reshape=True) x, y = torch.tensor_split(xy, (q_x.shape[1],), dim=1) x = self.proj_x(x) o = torch.zeros(y.shape[0], q_y.shape[1], y.shape[-1], device=y.device, dtype=y.dtype) o[:, :y.shape[1]] = y y = self.proj_y(o) # print("ox", x) # print("oy", y) return x, y class AsymmetricJointBlock(nn.Module): def __init__( self, hidden_size_x: int, hidden_size_y: int, num_heads: int, *, mlp_ratio_x: float = 8.0, # Ratio of hidden size to d_model for MLP for visual tokens. mlp_ratio_y: float = 4.0, # Ratio of hidden size to d_model for MLP for text tokens. update_y: bool = True, # Whether to update text tokens in this block. device: Optional[torch.device] = None, dtype=None, operations=None, **block_kwargs, ): super().__init__() self.update_y = update_y self.hidden_size_x = hidden_size_x self.hidden_size_y = hidden_size_y self.mod_x = operations.Linear(hidden_size_x, 4 * hidden_size_x, device=device, dtype=dtype) if self.update_y: self.mod_y = operations.Linear(hidden_size_x, 4 * hidden_size_y, device=device, dtype=dtype) else: self.mod_y = operations.Linear(hidden_size_x, hidden_size_y, device=device, dtype=dtype) # Self-attention: self.attn = AsymmetricAttention( hidden_size_x, hidden_size_y, num_heads=num_heads, update_y=update_y, device=device, dtype=dtype, operations=operations, **block_kwargs, ) # MLP. mlp_hidden_dim_x = int(hidden_size_x * mlp_ratio_x) assert mlp_hidden_dim_x == int(1536 * 8) self.mlp_x = FeedForward( in_features=hidden_size_x, hidden_size=mlp_hidden_dim_x, multiple_of=256, ffn_dim_multiplier=None, device=device, dtype=dtype, operations=operations, ) # MLP for text not needed in last block. if self.update_y: mlp_hidden_dim_y = int(hidden_size_y * mlp_ratio_y) self.mlp_y = FeedForward( in_features=hidden_size_y, hidden_size=mlp_hidden_dim_y, multiple_of=256, ffn_dim_multiplier=None, device=device, dtype=dtype, operations=operations, ) def forward( self, x: torch.Tensor, c: torch.Tensor, y: torch.Tensor, **attn_kwargs, ): """Forward pass of a block. Args: x: (B, N, dim) tensor of visual tokens c: (B, dim) tensor of conditioned features y: (B, L, dim) tensor of text tokens num_frames: Number of frames in the video. N = num_frames * num_spatial_tokens Returns: x: (B, N, dim) tensor of visual tokens after block y: (B, L, dim) tensor of text tokens after block """ N = x.size(1) c = F.silu(c) mod_x = self.mod_x(c) scale_msa_x, gate_msa_x, scale_mlp_x, gate_mlp_x = mod_x.chunk(4, dim=1) mod_y = self.mod_y(c) if self.update_y: scale_msa_y, gate_msa_y, scale_mlp_y, gate_mlp_y = mod_y.chunk(4, dim=1) else: scale_msa_y = mod_y # Self-attention block. x_attn, y_attn = self.attn( x, y, scale_x=scale_msa_x, scale_y=scale_msa_y, **attn_kwargs, ) assert x_attn.size(1) == N x = residual_tanh_gated_rmsnorm(x, x_attn, gate_msa_x) if self.update_y: y = residual_tanh_gated_rmsnorm(y, y_attn, gate_msa_y) # MLP block. x = self.ff_block_x(x, scale_mlp_x, gate_mlp_x) if self.update_y: y = self.ff_block_y(y, scale_mlp_y, gate_mlp_y) return x, y def ff_block_x(self, x, scale_x, gate_x): x_mod = modulated_rmsnorm(x, scale_x) x_res = self.mlp_x(x_mod) x = residual_tanh_gated_rmsnorm(x, x_res, gate_x) # Sandwich norm return x def ff_block_y(self, y, scale_y, gate_y): y_mod = modulated_rmsnorm(y, scale_y) y_res = self.mlp_y(y_mod) y = residual_tanh_gated_rmsnorm(y, y_res, gate_y) # Sandwich norm return y class FinalLayer(nn.Module): """ The final layer of DiT. """ def __init__( self, hidden_size, patch_size, out_channels, device: Optional[torch.device] = None, dtype=None, operations=None, ): super().__init__() self.norm_final = operations.LayerNorm( hidden_size, elementwise_affine=False, eps=1e-6, device=device, dtype=dtype ) self.mod = operations.Linear(hidden_size, 2 * hidden_size, device=device, dtype=dtype) self.linear = operations.Linear( hidden_size, patch_size * patch_size * out_channels, device=device, dtype=dtype ) def forward(self, x, c): c = F.silu(c) shift, scale = self.mod(c).chunk(2, dim=1) x = modulate(self.norm_final(x), shift, scale) x = self.linear(x) return x class AsymmDiTJoint(nn.Module): """ Diffusion model with a Transformer backbone. Ingests text embeddings instead of a label. """ def __init__( self, *, patch_size=2, in_channels=4, hidden_size_x=1152, hidden_size_y=1152, depth=48, num_heads=16, mlp_ratio_x=8.0, mlp_ratio_y=4.0, use_t5: bool = False, t5_feat_dim: int = 4096, t5_token_length: int = 256, learn_sigma=True, patch_embed_bias: bool = True, timestep_mlp_bias: bool = True, attend_to_padding: bool = False, timestep_scale: Optional[float] = None, use_extended_posenc: bool = False, posenc_preserve_area: bool = False, rope_theta: float = 10000.0, image_model=None, device: Optional[torch.device] = None, dtype=None, operations=None, **block_kwargs, ): super().__init__() self.dtype = dtype self.learn_sigma = learn_sigma self.in_channels = in_channels self.out_channels = in_channels * 2 if learn_sigma else in_channels self.patch_size = patch_size self.num_heads = num_heads self.hidden_size_x = hidden_size_x self.hidden_size_y = hidden_size_y self.head_dim = ( hidden_size_x // num_heads ) # Head dimension and count is determined by visual. self.attend_to_padding = attend_to_padding self.use_extended_posenc = use_extended_posenc self.posenc_preserve_area = posenc_preserve_area self.use_t5 = use_t5 self.t5_token_length = t5_token_length self.t5_feat_dim = t5_feat_dim self.rope_theta = ( rope_theta # Scaling factor for frequency computation for temporal RoPE. ) self.x_embedder = PatchEmbed( patch_size=patch_size, in_chans=in_channels, embed_dim=hidden_size_x, bias=patch_embed_bias, dtype=dtype, device=device, operations=operations ) # Conditionings # Timestep self.t_embedder = TimestepEmbedder( hidden_size_x, bias=timestep_mlp_bias, timestep_scale=timestep_scale, dtype=dtype, device=device, operations=operations ) if self.use_t5: # Caption Pooling (T5) self.t5_y_embedder = AttentionPool( t5_feat_dim, num_heads=8, output_dim=hidden_size_x, dtype=dtype, device=device, operations=operations ) # Dense Embedding Projection (T5) self.t5_yproj = operations.Linear( t5_feat_dim, hidden_size_y, bias=True, dtype=dtype, device=device ) # Initialize pos_frequencies as an empty parameter. self.pos_frequencies = nn.Parameter( torch.empty(3, self.num_heads, self.head_dim // 2, dtype=dtype, device=device) ) assert not self.attend_to_padding # for depth 48: # b = 0: AsymmetricJointBlock, update_y=True # b = 1: AsymmetricJointBlock, update_y=True # ... # b = 46: AsymmetricJointBlock, update_y=True # b = 47: AsymmetricJointBlock, update_y=False. No need to update text features. blocks = [] for b in range(depth): # Joint multi-modal block update_y = b < depth - 1 block = AsymmetricJointBlock( hidden_size_x, hidden_size_y, num_heads, mlp_ratio_x=mlp_ratio_x, mlp_ratio_y=mlp_ratio_y, update_y=update_y, attend_to_padding=attend_to_padding, device=device, dtype=dtype, operations=operations, **block_kwargs, ) blocks.append(block) self.blocks = nn.ModuleList(blocks) self.final_layer = FinalLayer( hidden_size_x, patch_size, self.out_channels, dtype=dtype, device=device, operations=operations ) def embed_x(self, x: torch.Tensor) -> torch.Tensor: """ Args: x: (B, C=12, T, H, W) tensor of visual tokens Returns: x: (B, C=3072, N) tensor of visual tokens with positional embedding. """ return self.x_embedder(x) # Convert BcTHW to BCN def prepare( self, x: torch.Tensor, sigma: torch.Tensor, t5_feat: torch.Tensor, t5_mask: torch.Tensor, ): """Prepare input and conditioning embeddings.""" # Visual patch embeddings with positional encoding. T, H, W = x.shape[-3:] pH, pW = H // self.patch_size, W // self.patch_size x = self.embed_x(x) # (B, N, D), where N = T * H * W / patch_size ** 2 assert x.ndim == 3 B = x.size(0) pH, pW = H // self.patch_size, W // self.patch_size N = T * pH * pW assert x.size(1) == N pos = create_position_matrix( T, pH=pH, pW=pW, device=x.device, dtype=torch.float32 ) # (N, 3) rope_cos, rope_sin = compute_mixed_rotation( freqs=comfy.ops.cast_to(self.pos_frequencies, dtype=x.dtype, device=x.device), pos=pos ) # Each are (N, num_heads, dim // 2) c_t = self.t_embedder(1 - sigma, out_dtype=x.dtype) # (B, D) t5_y_pool = self.t5_y_embedder(t5_feat, t5_mask) # (B, D) c = c_t + t5_y_pool y_feat = self.t5_yproj(t5_feat) # (B, L, t5_feat_dim) --> (B, L, D) return x, c, y_feat, rope_cos, rope_sin def forward( self, x: torch.Tensor, timestep: torch.Tensor, context: List[torch.Tensor], attention_mask: List[torch.Tensor], num_tokens=256, packed_indices: Dict[str, torch.Tensor] = None, rope_cos: torch.Tensor = None, rope_sin: torch.Tensor = None, control=None, transformer_options={}, **kwargs ): patches_replace = transformer_options.get("patches_replace", {}) y_feat = context y_mask = attention_mask sigma = timestep """Forward pass of DiT. Args: x: (B, C, T, H, W) tensor of spatial inputs (images or latent representations of images) sigma: (B,) tensor of noise standard deviations y_feat: List((B, L, y_feat_dim) tensor of caption token features. For SDXL text encoders: L=77, y_feat_dim=2048) y_mask: List((B, L) boolean tensor indicating which tokens are not padding) packed_indices: Dict with keys for Flash Attention. Result of compute_packed_indices. """ B, _, T, H, W = x.shape x, c, y_feat, rope_cos, rope_sin = self.prepare( x, sigma, y_feat, y_mask ) del y_mask blocks_replace = patches_replace.get("dit", {}) for i, block in enumerate(self.blocks): if ("double_block", i) in blocks_replace: def block_wrap(args): out = {} out["img"], out["txt"] = block( args["img"], args["vec"], args["txt"], rope_cos=args["rope_cos"], rope_sin=args["rope_sin"], crop_y=args["num_tokens"] ) return out out = blocks_replace[("double_block", i)]({"img": x, "txt": y_feat, "vec": c, "rope_cos": rope_cos, "rope_sin": rope_sin, "num_tokens": num_tokens}, {"original_block": block_wrap}) y_feat = out["txt"] x = out["img"] else: x, y_feat = block( x, c, y_feat, rope_cos=rope_cos, rope_sin=rope_sin, crop_y=num_tokens, ) # (B, M, D), (B, L, D) del y_feat # Final layers don't use dense text features. x = self.final_layer(x, c) # (B, M, patch_size ** 2 * out_channels) x = rearrange( x, "B (T hp wp) (p1 p2 c) -> B c T (hp p1) (wp p2)", T=T, hp=H // self.patch_size, wp=W // self.patch_size, p1=self.patch_size, p2=self.patch_size, c=self.out_channels, ) return -x