import torch from comfy.ldm.modules.attention import optimized_attention_for_device class BertAttention(torch.nn.Module): def __init__(self, embed_dim, heads, dtype, device, operations): super().__init__() self.heads = heads self.query = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) self.key = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) self.value = operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device) def forward(self, x, mask=None, optimized_attention=None): q = self.query(x) k = self.key(x) v = self.value(x) out = optimized_attention(q, k, v, self.heads, mask) return out class BertOutput(torch.nn.Module): def __init__(self, input_dim, output_dim, layer_norm_eps, dtype, device, operations): super().__init__() self.dense = operations.Linear(input_dim, output_dim, dtype=dtype, device=device) self.LayerNorm = operations.LayerNorm(output_dim, eps=layer_norm_eps, dtype=dtype, device=device) # self.dropout = nn.Dropout(0.0) def forward(self, x, y): x = self.dense(x) # hidden_states = self.dropout(hidden_states) x = self.LayerNorm(x + y) return x class BertAttentionBlock(torch.nn.Module): def __init__(self, embed_dim, heads, layer_norm_eps, dtype, device, operations): super().__init__() self.self = BertAttention(embed_dim, heads, dtype, device, operations) self.output = BertOutput(embed_dim, embed_dim, layer_norm_eps, dtype, device, operations) def forward(self, x, mask, optimized_attention): y = self.self(x, mask, optimized_attention) return self.output(y, x) class BertIntermediate(torch.nn.Module): def __init__(self, embed_dim, intermediate_dim, dtype, device, operations): super().__init__() self.dense = operations.Linear(embed_dim, intermediate_dim, dtype=dtype, device=device) def forward(self, x): x = self.dense(x) return torch.nn.functional.gelu(x) class BertBlock(torch.nn.Module): def __init__(self, embed_dim, intermediate_dim, heads, layer_norm_eps, dtype, device, operations): super().__init__() self.attention = BertAttentionBlock(embed_dim, heads, layer_norm_eps, dtype, device, operations) self.intermediate = BertIntermediate(embed_dim, intermediate_dim, dtype, device, operations) self.output = BertOutput(intermediate_dim, embed_dim, layer_norm_eps, dtype, device, operations) def forward(self, x, mask, optimized_attention): x = self.attention(x, mask, optimized_attention) y = self.intermediate(x) return self.output(y, x) class BertEncoder(torch.nn.Module): def __init__(self, num_layers, embed_dim, intermediate_dim, heads, layer_norm_eps, dtype, device, operations): super().__init__() self.layer = torch.nn.ModuleList([BertBlock(embed_dim, intermediate_dim, heads, layer_norm_eps, dtype, device, operations) for i in range(num_layers)]) def forward(self, x, mask=None, intermediate_output=None): optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True) if intermediate_output is not None: if intermediate_output < 0: intermediate_output = len(self.layer) + intermediate_output intermediate = None for i, l in enumerate(self.layer): x = l(x, mask, optimized_attention) if i == intermediate_output: intermediate = x.clone() return x, intermediate class BertEmbeddings(torch.nn.Module): def __init__(self, vocab_size, max_position_embeddings, type_vocab_size, pad_token_id, embed_dim, layer_norm_eps, dtype, device, operations): super().__init__() self.word_embeddings = torch.nn.Embedding(vocab_size, embed_dim, padding_idx=pad_token_id, dtype=dtype, device=device) self.position_embeddings = torch.nn.Embedding(max_position_embeddings, embed_dim, dtype=dtype, device=device) self.token_type_embeddings = torch.nn.Embedding(type_vocab_size, embed_dim, dtype=dtype, device=device) self.LayerNorm = operations.LayerNorm(embed_dim, eps=layer_norm_eps, dtype=dtype, device=device) def forward(self, input_tokens, token_type_ids=None): x = self.word_embeddings(input_tokens) x += self.position_embeddings.weight[:x.shape[1]] if token_type_ids is not None: x += self.token_type_embeddings(token_type_ids) else: x += self.token_type_embeddings.weight[0] x = self.LayerNorm(x) return x class BertModel_(torch.nn.Module): def __init__(self, config_dict, dtype, device, operations): super().__init__() embed_dim = config_dict["hidden_size"] layer_norm_eps = config_dict["layer_norm_eps"] self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations) self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations) def forward(self, input_tokens, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True): x = self.embeddings(input_tokens) mask = None if attention_mask is not None: mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]) mask = mask.masked_fill(mask.to(torch.bool), float("-inf")) x, i = self.encoder(x, mask, intermediate_output) return x, i class BertModel(torch.nn.Module): def __init__(self, config_dict, dtype, device, operations): super().__init__() self.bert = BertModel_(config_dict, dtype, device, operations) self.num_layers = config_dict["num_hidden_layers"] def get_input_embeddings(self): return self.bert.embeddings.word_embeddings def set_input_embeddings(self, embeddings): self.bert.embeddings.word_embeddings = embeddings def forward(self, *args, **kwargs): return self.bert(*args, **kwargs)