# code adapted from: https://github.com/Stability-AI/stable-audio-tools from comfy.ldm.modules.attention import optimized_attention import typing as tp import torch from einops import rearrange from torch import nn from torch.nn import functional as F import math class FourierFeatures(nn.Module): def __init__(self, in_features, out_features, std=1., dtype=None, device=None): super().__init__() assert out_features % 2 == 0 self.weight = nn.Parameter(torch.empty( [out_features // 2, in_features], dtype=dtype, device=device)) def forward(self, input): f = 2 * math.pi * input @ self.weight.T.to(dtype=input.dtype, device=input.device) return torch.cat([f.cos(), f.sin()], dim=-1) # norms class LayerNorm(nn.Module): def __init__(self, dim, bias=False, fix_scale=False, dtype=None, device=None): """ bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less """ super().__init__() self.gamma = nn.Parameter(torch.empty(dim, dtype=dtype, device=device)) if bias: self.beta = nn.Parameter(torch.empty(dim, dtype=dtype, device=device)) else: self.beta = None def forward(self, x): beta = self.beta if self.beta is not None: beta = beta.to(dtype=x.dtype, device=x.device) return F.layer_norm(x, x.shape[-1:], weight=self.gamma.to(dtype=x.dtype, device=x.device), bias=beta) class GLU(nn.Module): def __init__( self, dim_in, dim_out, activation, use_conv = False, conv_kernel_size = 3, dtype=None, device=None, operations=None, ): super().__init__() self.act = activation self.proj = operations.Linear(dim_in, dim_out * 2, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2), dtype=dtype, device=device) self.use_conv = use_conv def forward(self, x): if self.use_conv: x = rearrange(x, 'b n d -> b d n') x = self.proj(x) x = rearrange(x, 'b d n -> b n d') else: x = self.proj(x) x, gate = x.chunk(2, dim = -1) return x * self.act(gate) class AbsolutePositionalEmbedding(nn.Module): def __init__(self, dim, max_seq_len): super().__init__() self.scale = dim ** -0.5 self.max_seq_len = max_seq_len self.emb = nn.Embedding(max_seq_len, dim) def forward(self, x, pos = None, seq_start_pos = None): seq_len, device = x.shape[1], x.device assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}' if pos is None: pos = torch.arange(seq_len, device = device) if seq_start_pos is not None: pos = (pos - seq_start_pos[..., None]).clamp(min = 0) pos_emb = self.emb(pos) pos_emb = pos_emb * self.scale return pos_emb class ScaledSinusoidalEmbedding(nn.Module): def __init__(self, dim, theta = 10000): super().__init__() assert (dim % 2) == 0, 'dimension must be divisible by 2' self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5) half_dim = dim // 2 freq_seq = torch.arange(half_dim).float() / half_dim inv_freq = theta ** -freq_seq self.register_buffer('inv_freq', inv_freq, persistent = False) def forward(self, x, pos = None, seq_start_pos = None): seq_len, device = x.shape[1], x.device if pos is None: pos = torch.arange(seq_len, device = device) if seq_start_pos is not None: pos = pos - seq_start_pos[..., None] emb = torch.einsum('i, j -> i j', pos, self.inv_freq) emb = torch.cat((emb.sin(), emb.cos()), dim = -1) return emb * self.scale class RotaryEmbedding(nn.Module): def __init__( self, dim, use_xpos = False, scale_base = 512, interpolation_factor = 1., base = 10000, base_rescale_factor = 1. ): super().__init__() # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning # has some connection to NTK literature # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ base *= base_rescale_factor ** (dim / (dim - 2)) inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim)) self.register_buffer('inv_freq', inv_freq) assert interpolation_factor >= 1. self.interpolation_factor = interpolation_factor if not use_xpos: self.register_buffer('scale', None) return scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim) self.scale_base = scale_base self.register_buffer('scale', scale) def forward_from_seq_len(self, seq_len, device, dtype): # device = self.inv_freq.device t = torch.arange(seq_len, device=device, dtype=dtype) return self.forward(t) def forward(self, t): # device = self.inv_freq.device device = t.device dtype = t.dtype # t = t.to(torch.float32) t = t / self.interpolation_factor freqs = torch.einsum('i , j -> i j', t, self.inv_freq.to(dtype=dtype, device=device)) freqs = torch.cat((freqs, freqs), dim = -1) if self.scale is None: return freqs, 1. power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base scale = self.scale.to(dtype=dtype, device=device) ** rearrange(power, 'n -> n 1') scale = torch.cat((scale, scale), dim = -1) return freqs, scale def rotate_half(x): x = rearrange(x, '... (j d) -> ... j d', j = 2) x1, x2 = x.unbind(dim = -2) return torch.cat((-x2, x1), dim = -1) def apply_rotary_pos_emb(t, freqs, scale = 1): out_dtype = t.dtype # cast to float32 if necessary for numerical stability dtype = t.dtype #reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32)) rot_dim, seq_len = freqs.shape[-1], t.shape[-2] freqs, t = freqs.to(dtype), t.to(dtype) freqs = freqs[-seq_len:, :] if t.ndim == 4 and freqs.ndim == 3: freqs = rearrange(freqs, 'b n d -> b 1 n d') # partial rotary embeddings, Wang et al. GPT-J t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:] t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale) t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype) return torch.cat((t, t_unrotated), dim = -1) class FeedForward(nn.Module): def __init__( self, dim, dim_out = None, mult = 4, no_bias = False, glu = True, use_conv = False, conv_kernel_size = 3, zero_init_output = True, dtype=None, device=None, operations=None, ): super().__init__() inner_dim = int(dim * mult) # Default to SwiGLU activation = nn.SiLU() dim_out = dim if dim_out is None else dim_out if glu: linear_in = GLU(dim, inner_dim, activation, dtype=dtype, device=device, operations=operations) else: linear_in = nn.Sequential( Rearrange('b n d -> b d n') if use_conv else nn.Identity(), operations.Linear(dim, inner_dim, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device), Rearrange('b n d -> b d n') if use_conv else nn.Identity(), activation ) linear_out = operations.Linear(inner_dim, dim_out, bias = not no_bias, dtype=dtype, device=device) if not use_conv else operations.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias, dtype=dtype, device=device) # # init last linear layer to 0 # if zero_init_output: # nn.init.zeros_(linear_out.weight) # if not no_bias: # nn.init.zeros_(linear_out.bias) self.ff = nn.Sequential( linear_in, Rearrange('b d n -> b n d') if use_conv else nn.Identity(), linear_out, Rearrange('b n d -> b d n') if use_conv else nn.Identity(), ) def forward(self, x): return self.ff(x) class Attention(nn.Module): def __init__( self, dim, dim_heads = 64, dim_context = None, causal = False, zero_init_output=True, qk_norm = False, natten_kernel_size = None, dtype=None, device=None, operations=None, ): super().__init__() self.dim = dim self.dim_heads = dim_heads self.causal = causal dim_kv = dim_context if dim_context is not None else dim self.num_heads = dim // dim_heads self.kv_heads = dim_kv // dim_heads if dim_context is not None: self.to_q = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) self.to_kv = operations.Linear(dim_kv, dim_kv * 2, bias=False, dtype=dtype, device=device) else: self.to_qkv = operations.Linear(dim, dim * 3, bias=False, dtype=dtype, device=device) self.to_out = operations.Linear(dim, dim, bias=False, dtype=dtype, device=device) # if zero_init_output: # nn.init.zeros_(self.to_out.weight) self.qk_norm = qk_norm def forward( self, x, context = None, mask = None, context_mask = None, rotary_pos_emb = None, causal = None ): h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None kv_input = context if has_context else x if hasattr(self, 'to_q'): # Use separate linear projections for q and k/v q = self.to_q(x) q = rearrange(q, 'b n (h d) -> b h n d', h = h) k, v = self.to_kv(kv_input).chunk(2, dim=-1) k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v)) else: # Use fused linear projection q, k, v = self.to_qkv(x).chunk(3, dim=-1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v)) # Normalize q and k for cosine sim attention if self.qk_norm: q = F.normalize(q, dim=-1) k = F.normalize(k, dim=-1) if rotary_pos_emb is not None and not has_context: freqs, _ = rotary_pos_emb q_dtype = q.dtype k_dtype = k.dtype q = q.to(torch.float32) k = k.to(torch.float32) freqs = freqs.to(torch.float32) q = apply_rotary_pos_emb(q, freqs) k = apply_rotary_pos_emb(k, freqs) q = q.to(q_dtype) k = k.to(k_dtype) input_mask = context_mask if input_mask is None and not has_context: input_mask = mask # determine masking masks = [] final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account if input_mask is not None: input_mask = rearrange(input_mask, 'b j -> b 1 1 j') masks.append(~input_mask) # Other masks will be added here later if len(masks) > 0: final_attn_mask = ~or_reduce(masks) n, device = q.shape[-2], q.device causal = self.causal if causal is None else causal if n == 1 and causal: causal = False if h != kv_h: # Repeat interleave kv_heads to match q_heads heads_per_kv_head = h // kv_h k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v)) out = optimized_attention(q, k, v, h, skip_reshape=True) out = self.to_out(out) if mask is not None: mask = rearrange(mask, 'b n -> b n 1') out = out.masked_fill(~mask, 0.) return out class ConformerModule(nn.Module): def __init__( self, dim, norm_kwargs = {}, ): super().__init__() self.dim = dim self.in_norm = LayerNorm(dim, **norm_kwargs) self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False) self.glu = GLU(dim, dim, nn.SiLU()) self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False) self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm self.swish = nn.SiLU() self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False) def forward(self, x): x = self.in_norm(x) x = rearrange(x, 'b n d -> b d n') x = self.pointwise_conv(x) x = rearrange(x, 'b d n -> b n d') x = self.glu(x) x = rearrange(x, 'b n d -> b d n') x = self.depthwise_conv(x) x = rearrange(x, 'b d n -> b n d') x = self.mid_norm(x) x = self.swish(x) x = rearrange(x, 'b n d -> b d n') x = self.pointwise_conv_2(x) x = rearrange(x, 'b d n -> b n d') return x class TransformerBlock(nn.Module): def __init__( self, dim, dim_heads = 64, cross_attend = False, dim_context = None, global_cond_dim = None, causal = False, zero_init_branch_outputs = True, conformer = False, layer_ix = -1, remove_norms = False, attn_kwargs = {}, ff_kwargs = {}, norm_kwargs = {}, dtype=None, device=None, operations=None, ): super().__init__() self.dim = dim self.dim_heads = dim_heads self.cross_attend = cross_attend self.dim_context = dim_context self.causal = causal self.pre_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity() self.self_attn = Attention( dim, dim_heads = dim_heads, causal = causal, zero_init_output=zero_init_branch_outputs, dtype=dtype, device=device, operations=operations, **attn_kwargs ) if cross_attend: self.cross_attend_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity() self.cross_attn = Attention( dim, dim_heads = dim_heads, dim_context=dim_context, causal = causal, zero_init_output=zero_init_branch_outputs, dtype=dtype, device=device, operations=operations, **attn_kwargs ) self.ff_norm = LayerNorm(dim, dtype=dtype, device=device, **norm_kwargs) if not remove_norms else nn.Identity() self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, dtype=dtype, device=device, operations=operations,**ff_kwargs) self.layer_ix = layer_ix self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None self.global_cond_dim = global_cond_dim if global_cond_dim is not None: self.to_scale_shift_gate = nn.Sequential( nn.SiLU(), nn.Linear(global_cond_dim, dim * 6, bias=False) ) nn.init.zeros_(self.to_scale_shift_gate[1].weight) #nn.init.zeros_(self.to_scale_shift_gate_self[1].bias) def forward( self, x, context = None, global_cond=None, mask = None, context_mask = None, rotary_pos_emb = None ): if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None: scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1) # self-attention with adaLN residual = x x = self.pre_norm(x) x = x * (1 + scale_self) + shift_self x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb) x = x * torch.sigmoid(1 - gate_self) x = x + residual if context is not None: x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask) if self.conformer is not None: x = x + self.conformer(x) # feedforward with adaLN residual = x x = self.ff_norm(x) x = x * (1 + scale_ff) + shift_ff x = self.ff(x) x = x * torch.sigmoid(1 - gate_ff) x = x + residual else: x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb) if context is not None: x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask) if self.conformer is not None: x = x + self.conformer(x) x = x + self.ff(self.ff_norm(x)) return x class ContinuousTransformer(nn.Module): def __init__( self, dim, depth, *, dim_in = None, dim_out = None, dim_heads = 64, cross_attend=False, cond_token_dim=None, global_cond_dim=None, causal=False, rotary_pos_emb=True, zero_init_branch_outputs=True, conformer=False, use_sinusoidal_emb=False, use_abs_pos_emb=False, abs_pos_emb_max_length=10000, dtype=None, device=None, operations=None, **kwargs ): super().__init__() self.dim = dim self.depth = depth self.causal = causal self.layers = nn.ModuleList([]) self.project_in = operations.Linear(dim_in, dim, bias=False, dtype=dtype, device=device) if dim_in is not None else nn.Identity() self.project_out = operations.Linear(dim, dim_out, bias=False, dtype=dtype, device=device) if dim_out is not None else nn.Identity() if rotary_pos_emb: self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32)) else: self.rotary_pos_emb = None self.use_sinusoidal_emb = use_sinusoidal_emb if use_sinusoidal_emb: self.pos_emb = ScaledSinusoidalEmbedding(dim) self.use_abs_pos_emb = use_abs_pos_emb if use_abs_pos_emb: self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length) for i in range(depth): self.layers.append( TransformerBlock( dim, dim_heads = dim_heads, cross_attend = cross_attend, dim_context = cond_token_dim, global_cond_dim = global_cond_dim, causal = causal, zero_init_branch_outputs = zero_init_branch_outputs, conformer=conformer, layer_ix=i, dtype=dtype, device=device, operations=operations, **kwargs ) ) def forward( self, x, mask = None, prepend_embeds = None, prepend_mask = None, global_cond = None, return_info = False, **kwargs ): batch, seq, device = *x.shape[:2], x.device info = { "hidden_states": [], } x = self.project_in(x) if prepend_embeds is not None: prepend_length, prepend_dim = prepend_embeds.shape[1:] assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension' x = torch.cat((prepend_embeds, x), dim = -2) if prepend_mask is not None or mask is not None: mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool) prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool) mask = torch.cat((prepend_mask, mask), dim = -1) # Attention layers if self.rotary_pos_emb is not None: rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1], dtype=x.dtype, device=x.device) else: rotary_pos_emb = None if self.use_sinusoidal_emb or self.use_abs_pos_emb: x = x + self.pos_emb(x) # Iterate over the transformer layers for layer in self.layers: x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs) # x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs) if return_info: info["hidden_states"].append(x) x = self.project_out(x) if return_info: return x, info return x class AudioDiffusionTransformer(nn.Module): def __init__(self, io_channels=64, patch_size=1, embed_dim=1536, cond_token_dim=768, project_cond_tokens=False, global_cond_dim=1536, project_global_cond=True, input_concat_dim=0, prepend_cond_dim=0, depth=24, num_heads=24, transformer_type: tp.Literal["continuous_transformer"] = "continuous_transformer", global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend", audio_model="", dtype=None, device=None, operations=None, **kwargs): super().__init__() self.dtype = dtype self.cond_token_dim = cond_token_dim # Timestep embeddings timestep_features_dim = 256 self.timestep_features = FourierFeatures(1, timestep_features_dim, dtype=dtype, device=device) self.to_timestep_embed = nn.Sequential( operations.Linear(timestep_features_dim, embed_dim, bias=True, dtype=dtype, device=device), nn.SiLU(), operations.Linear(embed_dim, embed_dim, bias=True, dtype=dtype, device=device), ) if cond_token_dim > 0: # Conditioning tokens cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim self.to_cond_embed = nn.Sequential( operations.Linear(cond_token_dim, cond_embed_dim, bias=False, dtype=dtype, device=device), nn.SiLU(), operations.Linear(cond_embed_dim, cond_embed_dim, bias=False, dtype=dtype, device=device) ) else: cond_embed_dim = 0 if global_cond_dim > 0: # Global conditioning global_embed_dim = global_cond_dim if not project_global_cond else embed_dim self.to_global_embed = nn.Sequential( operations.Linear(global_cond_dim, global_embed_dim, bias=False, dtype=dtype, device=device), nn.SiLU(), operations.Linear(global_embed_dim, global_embed_dim, bias=False, dtype=dtype, device=device) ) if prepend_cond_dim > 0: # Prepend conditioning self.to_prepend_embed = nn.Sequential( operations.Linear(prepend_cond_dim, embed_dim, bias=False, dtype=dtype, device=device), nn.SiLU(), operations.Linear(embed_dim, embed_dim, bias=False, dtype=dtype, device=device) ) self.input_concat_dim = input_concat_dim dim_in = io_channels + self.input_concat_dim self.patch_size = patch_size # Transformer self.transformer_type = transformer_type self.global_cond_type = global_cond_type if self.transformer_type == "continuous_transformer": global_dim = None if self.global_cond_type == "adaLN": # The global conditioning is projected to the embed_dim already at this point global_dim = embed_dim self.transformer = ContinuousTransformer( dim=embed_dim, depth=depth, dim_heads=embed_dim // num_heads, dim_in=dim_in * patch_size, dim_out=io_channels * patch_size, cross_attend = cond_token_dim > 0, cond_token_dim = cond_embed_dim, global_cond_dim=global_dim, dtype=dtype, device=device, operations=operations, **kwargs ) else: raise ValueError(f"Unknown transformer type: {self.transformer_type}") self.preprocess_conv = operations.Conv1d(dim_in, dim_in, 1, bias=False, dtype=dtype, device=device) self.postprocess_conv = operations.Conv1d(io_channels, io_channels, 1, bias=False, dtype=dtype, device=device) def _forward( self, x, t, mask=None, cross_attn_cond=None, cross_attn_cond_mask=None, input_concat_cond=None, global_embed=None, prepend_cond=None, prepend_cond_mask=None, return_info=False, **kwargs): if cross_attn_cond is not None: cross_attn_cond = self.to_cond_embed(cross_attn_cond) if global_embed is not None: # Project the global conditioning to the embedding dimension global_embed = self.to_global_embed(global_embed) prepend_inputs = None prepend_mask = None prepend_length = 0 if prepend_cond is not None: # Project the prepend conditioning to the embedding dimension prepend_cond = self.to_prepend_embed(prepend_cond) prepend_inputs = prepend_cond if prepend_cond_mask is not None: prepend_mask = prepend_cond_mask if input_concat_cond is not None: # Interpolate input_concat_cond to the same length as x if input_concat_cond.shape[2] != x.shape[2]: input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest') x = torch.cat([x, input_concat_cond], dim=1) # Get the batch of timestep embeddings timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None]).to(x.dtype)) # (b, embed_dim) # Timestep embedding is considered a global embedding. Add to the global conditioning if it exists if global_embed is not None: global_embed = global_embed + timestep_embed else: global_embed = timestep_embed # Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer if self.global_cond_type == "prepend": if prepend_inputs is None: # Prepend inputs are just the global embed, and the mask is all ones prepend_inputs = global_embed.unsqueeze(1) prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool) else: # Prepend inputs are the prepend conditioning + the global embed prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1) prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)], dim=1) prepend_length = prepend_inputs.shape[1] x = self.preprocess_conv(x) + x x = rearrange(x, "b c t -> b t c") extra_args = {} if self.global_cond_type == "adaLN": extra_args["global_cond"] = global_embed if self.patch_size > 1: x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size) if self.transformer_type == "x-transformers": output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, **extra_args, **kwargs) elif self.transformer_type == "continuous_transformer": output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, return_info=return_info, **extra_args, **kwargs) if return_info: output, info = output elif self.transformer_type == "mm_transformer": output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask, **extra_args, **kwargs) output = rearrange(output, "b t c -> b c t")[:,:,prepend_length:] if self.patch_size > 1: output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size) output = self.postprocess_conv(output) + output if return_info: return output, info return output def forward( self, x, timestep, context=None, context_mask=None, input_concat_cond=None, global_embed=None, negative_global_embed=None, prepend_cond=None, prepend_cond_mask=None, mask=None, return_info=False, control=None, transformer_options={}, **kwargs): return self._forward( x, timestep, cross_attn_cond=context, cross_attn_cond_mask=context_mask, input_concat_cond=input_concat_cond, global_embed=global_embed, prepend_cond=prepend_cond, prepend_cond_mask=prepend_cond_mask, mask=mask, return_info=return_info, **kwargs )