""" This file is part of ComfyUI. Copyright (C) 2024 Comfy This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ import torch import logging from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep from comfy.ldm.cascade.stage_c import StageC from comfy.ldm.cascade.stage_b import StageB from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation from comfy.ldm.modules.diffusionmodules.mmdit import OpenAISignatureMMDITWrapper import comfy.ldm.genmo.joint_model.asymm_models_joint import comfy.ldm.aura.mmdit import comfy.ldm.hydit.models import comfy.ldm.audio.dit import comfy.ldm.audio.embedders import comfy.ldm.flux.model import comfy.ldm.lightricks.model import comfy.model_management import comfy.conds import comfy.ops from enum import Enum from . import utils import comfy.latent_formats import math class ModelType(Enum): EPS = 1 V_PREDICTION = 2 V_PREDICTION_EDM = 3 STABLE_CASCADE = 4 EDM = 5 FLOW = 6 V_PREDICTION_CONTINUOUS = 7 FLUX = 8 from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling, ModelSamplingContinuousV def model_sampling(model_config, model_type): s = ModelSamplingDiscrete if model_type == ModelType.EPS: c = EPS elif model_type == ModelType.V_PREDICTION: c = V_PREDICTION elif model_type == ModelType.V_PREDICTION_EDM: c = V_PREDICTION s = ModelSamplingContinuousEDM elif model_type == ModelType.FLOW: c = comfy.model_sampling.CONST s = comfy.model_sampling.ModelSamplingDiscreteFlow elif model_type == ModelType.STABLE_CASCADE: c = EPS s = StableCascadeSampling elif model_type == ModelType.EDM: c = EDM s = ModelSamplingContinuousEDM elif model_type == ModelType.V_PREDICTION_CONTINUOUS: c = V_PREDICTION s = ModelSamplingContinuousV elif model_type == ModelType.FLUX: c = comfy.model_sampling.CONST s = comfy.model_sampling.ModelSamplingFlux class ModelSampling(s, c): pass return ModelSampling(model_config) class BaseModel(torch.nn.Module): def __init__(self, model_config, model_type=ModelType.EPS, device=None, unet_model=UNetModel): super().__init__() unet_config = model_config.unet_config self.latent_format = model_config.latent_format self.model_config = model_config self.manual_cast_dtype = model_config.manual_cast_dtype self.device = device if not unet_config.get("disable_unet_model_creation", False): if model_config.custom_operations is None: fp8 = model_config.optimizations.get("fp8", model_config.scaled_fp8 is not None) operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8) else: operations = model_config.custom_operations self.diffusion_model = unet_model(**unet_config, device=device, operations=operations) if comfy.model_management.force_channels_last(): self.diffusion_model.to(memory_format=torch.channels_last) logging.debug("using channels last mode for diffusion model") logging.info("model weight dtype {}, manual cast: {}".format(self.get_dtype(), self.manual_cast_dtype)) self.model_type = model_type self.model_sampling = model_sampling(model_config, model_type) self.adm_channels = unet_config.get("adm_in_channels", None) if self.adm_channels is None: self.adm_channels = 0 self.concat_keys = () logging.info("model_type {}".format(model_type.name)) logging.debug("adm {}".format(self.adm_channels)) self.memory_usage_factor = model_config.memory_usage_factor def apply_model(self, x, t, c_concat=None, c_crossattn=None, control=None, transformer_options={}, **kwargs): sigma = t xc = self.model_sampling.calculate_input(sigma, x) if c_concat is not None: xc = torch.cat([xc] + [c_concat], dim=1) context = c_crossattn dtype = self.get_dtype() if self.manual_cast_dtype is not None: dtype = self.manual_cast_dtype xc = xc.to(dtype) t = self.model_sampling.timestep(t).float() context = context.to(dtype) extra_conds = {} for o in kwargs: extra = kwargs[o] if hasattr(extra, "dtype"): if extra.dtype != torch.int and extra.dtype != torch.long: extra = extra.to(dtype) extra_conds[o] = extra model_output = self.diffusion_model(xc, t, context=context, control=control, transformer_options=transformer_options, **extra_conds).float() return self.model_sampling.calculate_denoised(sigma, model_output, x) def get_dtype(self): return self.diffusion_model.dtype def is_adm(self): return self.adm_channels > 0 def encode_adm(self, **kwargs): return None def concat_cond(self, **kwargs): if len(self.concat_keys) > 0: cond_concat = [] denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) concat_latent_image = kwargs.get("concat_latent_image", None) if concat_latent_image is None: concat_latent_image = kwargs.get("latent_image", None) else: concat_latent_image = self.process_latent_in(concat_latent_image) noise = kwargs.get("noise", None) device = kwargs["device"] if concat_latent_image.shape[1:] != noise.shape[1:]: concat_latent_image = utils.common_upscale(concat_latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") concat_latent_image = utils.resize_to_batch_size(concat_latent_image, noise.shape[0]) if denoise_mask is not None: if len(denoise_mask.shape) == len(noise.shape): denoise_mask = denoise_mask[:,:1] denoise_mask = denoise_mask.reshape((-1, 1, denoise_mask.shape[-2], denoise_mask.shape[-1])) if denoise_mask.shape[-2:] != noise.shape[-2:]: denoise_mask = utils.common_upscale(denoise_mask, noise.shape[-1], noise.shape[-2], "bilinear", "center") denoise_mask = utils.resize_to_batch_size(denoise_mask.round(), noise.shape[0]) for ck in self.concat_keys: if denoise_mask is not None: if ck == "mask": cond_concat.append(denoise_mask.to(device)) elif ck == "masked_image": cond_concat.append(concat_latent_image.to(device)) #NOTE: the latent_image should be masked by the mask in pixel space else: if ck == "mask": cond_concat.append(torch.ones_like(noise)[:,:1]) elif ck == "masked_image": cond_concat.append(self.blank_inpaint_image_like(noise)) data = torch.cat(cond_concat, dim=1) return data return None def extra_conds(self, **kwargs): out = {} concat_cond = self.concat_cond(**kwargs) if concat_cond is not None: out['c_concat'] = comfy.conds.CONDNoiseShape(concat_cond) adm = self.encode_adm(**kwargs) if adm is not None: out['y'] = comfy.conds.CONDRegular(adm) cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) cross_attn_cnet = kwargs.get("cross_attn_controlnet", None) if cross_attn_cnet is not None: out['crossattn_controlnet'] = comfy.conds.CONDCrossAttn(cross_attn_cnet) c_concat = kwargs.get("noise_concat", None) if c_concat is not None: out['c_concat'] = comfy.conds.CONDNoiseShape(c_concat) return out def load_model_weights(self, sd, unet_prefix=""): to_load = {} keys = list(sd.keys()) for k in keys: if k.startswith(unet_prefix): to_load[k[len(unet_prefix):]] = sd.pop(k) to_load = self.model_config.process_unet_state_dict(to_load) m, u = self.diffusion_model.load_state_dict(to_load, strict=False) if len(m) > 0: logging.warning("unet missing: {}".format(m)) if len(u) > 0: logging.warning("unet unexpected: {}".format(u)) del to_load return self def process_latent_in(self, latent): return self.latent_format.process_in(latent) def process_latent_out(self, latent): return self.latent_format.process_out(latent) def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None): extra_sds = [] if clip_state_dict is not None: extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict)) if vae_state_dict is not None: extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict)) if clip_vision_state_dict is not None: extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict)) unet_state_dict = self.diffusion_model.state_dict() if self.model_config.scaled_fp8 is not None: unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8) unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict) if self.model_type == ModelType.V_PREDICTION: unet_state_dict["v_pred"] = torch.tensor([]) for sd in extra_sds: unet_state_dict.update(sd) return unet_state_dict def set_inpaint(self): self.concat_keys = ("mask", "masked_image") def blank_inpaint_image_like(latent_image): blank_image = torch.ones_like(latent_image) # these are the values for "zero" in pixel space translated to latent space blank_image[:,0] *= 0.8223 blank_image[:,1] *= -0.6876 blank_image[:,2] *= 0.6364 blank_image[:,3] *= 0.1380 return blank_image self.blank_inpaint_image_like = blank_inpaint_image_like def memory_required(self, input_shape): if comfy.model_management.xformers_enabled() or comfy.model_management.pytorch_attention_flash_attention(): dtype = self.get_dtype() if self.manual_cast_dtype is not None: dtype = self.manual_cast_dtype #TODO: this needs to be tweaked area = input_shape[0] * math.prod(input_shape[2:]) return (area * comfy.model_management.dtype_size(dtype) * 0.01 * self.memory_usage_factor) * (1024 * 1024) else: #TODO: this formula might be too aggressive since I tweaked the sub-quad and split algorithms to use less memory. area = input_shape[0] * math.prod(input_shape[2:]) return (area * 0.15 * self.memory_usage_factor) * (1024 * 1024) def unclip_adm(unclip_conditioning, device, noise_augmentor, noise_augment_merge=0.0, seed=None): adm_inputs = [] weights = [] noise_aug = [] for unclip_cond in unclip_conditioning: for adm_cond in unclip_cond["clip_vision_output"].image_embeds: weight = unclip_cond["strength"] noise_augment = unclip_cond["noise_augmentation"] noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) c_adm, noise_level_emb = noise_augmentor(adm_cond.to(device), noise_level=torch.tensor([noise_level], device=device), seed=seed) adm_out = torch.cat((c_adm, noise_level_emb), 1) * weight weights.append(weight) noise_aug.append(noise_augment) adm_inputs.append(adm_out) if len(noise_aug) > 1: adm_out = torch.stack(adm_inputs).sum(0) noise_augment = noise_augment_merge noise_level = round((noise_augmentor.max_noise_level - 1) * noise_augment) c_adm, noise_level_emb = noise_augmentor(adm_out[:, :noise_augmentor.time_embed.dim], noise_level=torch.tensor([noise_level], device=device)) adm_out = torch.cat((c_adm, noise_level_emb), 1) return adm_out class SD21UNCLIP(BaseModel): def __init__(self, model_config, noise_aug_config, model_type=ModelType.V_PREDICTION, device=None): super().__init__(model_config, model_type, device=device) self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**noise_aug_config) def encode_adm(self, **kwargs): unclip_conditioning = kwargs.get("unclip_conditioning", None) device = kwargs["device"] if unclip_conditioning is None: return torch.zeros((1, self.adm_channels)) else: return unclip_adm(unclip_conditioning, device, self.noise_augmentor, kwargs.get("unclip_noise_augment_merge", 0.05), kwargs.get("seed", 0) - 10) def sdxl_pooled(args, noise_augmentor): if "unclip_conditioning" in args: return unclip_adm(args.get("unclip_conditioning", None), args["device"], noise_augmentor, seed=args.get("seed", 0) - 10)[:,:1280] else: return args["pooled_output"] class SDXLRefiner(BaseModel): def __init__(self, model_config, model_type=ModelType.EPS, device=None): super().__init__(model_config, model_type, device=device) self.embedder = Timestep(256) self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) def encode_adm(self, **kwargs): clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) width = kwargs.get("width", 768) height = kwargs.get("height", 768) crop_w = kwargs.get("crop_w", 0) crop_h = kwargs.get("crop_h", 0) if kwargs.get("prompt_type", "") == "negative": aesthetic_score = kwargs.get("aesthetic_score", 2.5) else: aesthetic_score = kwargs.get("aesthetic_score", 6) out = [] out.append(self.embedder(torch.Tensor([height]))) out.append(self.embedder(torch.Tensor([width]))) out.append(self.embedder(torch.Tensor([crop_h]))) out.append(self.embedder(torch.Tensor([crop_w]))) out.append(self.embedder(torch.Tensor([aesthetic_score]))) flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) return torch.cat((clip_pooled.to(flat.device), flat), dim=1) class SDXL(BaseModel): def __init__(self, model_config, model_type=ModelType.EPS, device=None): super().__init__(model_config, model_type, device=device) self.embedder = Timestep(256) self.noise_augmentor = CLIPEmbeddingNoiseAugmentation(**{"noise_schedule_config": {"timesteps": 1000, "beta_schedule": "squaredcos_cap_v2"}, "timestep_dim": 1280}) def encode_adm(self, **kwargs): clip_pooled = sdxl_pooled(kwargs, self.noise_augmentor) width = kwargs.get("width", 768) height = kwargs.get("height", 768) crop_w = kwargs.get("crop_w", 0) crop_h = kwargs.get("crop_h", 0) target_width = kwargs.get("target_width", width) target_height = kwargs.get("target_height", height) out = [] out.append(self.embedder(torch.Tensor([height]))) out.append(self.embedder(torch.Tensor([width]))) out.append(self.embedder(torch.Tensor([crop_h]))) out.append(self.embedder(torch.Tensor([crop_w]))) out.append(self.embedder(torch.Tensor([target_height]))) out.append(self.embedder(torch.Tensor([target_width]))) flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) return torch.cat((clip_pooled.to(flat.device), flat), dim=1) class SVD_img2vid(BaseModel): def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None): super().__init__(model_config, model_type, device=device) self.embedder = Timestep(256) def encode_adm(self, **kwargs): fps_id = kwargs.get("fps", 6) - 1 motion_bucket_id = kwargs.get("motion_bucket_id", 127) augmentation = kwargs.get("augmentation_level", 0) out = [] out.append(self.embedder(torch.Tensor([fps_id]))) out.append(self.embedder(torch.Tensor([motion_bucket_id]))) out.append(self.embedder(torch.Tensor([augmentation]))) flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0) return flat def extra_conds(self, **kwargs): out = {} adm = self.encode_adm(**kwargs) if adm is not None: out['y'] = comfy.conds.CONDRegular(adm) latent_image = kwargs.get("concat_latent_image", None) noise = kwargs.get("noise", None) device = kwargs["device"] if latent_image is None: latent_image = torch.zeros_like(noise) if latent_image.shape[1:] != noise.shape[1:]: latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0]) out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image) cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) if "time_conditioning" in kwargs: out["time_context"] = comfy.conds.CONDCrossAttn(kwargs["time_conditioning"]) out['num_video_frames'] = comfy.conds.CONDConstant(noise.shape[0]) return out class SV3D_u(SVD_img2vid): def encode_adm(self, **kwargs): augmentation = kwargs.get("augmentation_level", 0) out = [] out.append(self.embedder(torch.flatten(torch.Tensor([augmentation])))) flat = torch.flatten(torch.cat(out)).unsqueeze(dim=0) return flat class SV3D_p(SVD_img2vid): def __init__(self, model_config, model_type=ModelType.V_PREDICTION_EDM, device=None): super().__init__(model_config, model_type, device=device) self.embedder_512 = Timestep(512) def encode_adm(self, **kwargs): augmentation = kwargs.get("augmentation_level", 0) elevation = kwargs.get("elevation", 0) #elevation and azimuth are in degrees here azimuth = kwargs.get("azimuth", 0) noise = kwargs.get("noise", None) out = [] out.append(self.embedder(torch.flatten(torch.Tensor([augmentation])))) out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(90 - torch.Tensor([elevation])), 360.0)))) out.append(self.embedder_512(torch.deg2rad(torch.fmod(torch.flatten(torch.Tensor([azimuth])), 360.0)))) out = list(map(lambda a: utils.resize_to_batch_size(a, noise.shape[0]), out)) return torch.cat(out, dim=1) class Stable_Zero123(BaseModel): def __init__(self, model_config, model_type=ModelType.EPS, device=None, cc_projection_weight=None, cc_projection_bias=None): super().__init__(model_config, model_type, device=device) self.cc_projection = comfy.ops.manual_cast.Linear(cc_projection_weight.shape[1], cc_projection_weight.shape[0], dtype=self.get_dtype(), device=device) self.cc_projection.weight.copy_(cc_projection_weight) self.cc_projection.bias.copy_(cc_projection_bias) def extra_conds(self, **kwargs): out = {} latent_image = kwargs.get("concat_latent_image", None) noise = kwargs.get("noise", None) if latent_image is None: latent_image = torch.zeros_like(noise) if latent_image.shape[1:] != noise.shape[1:]: latent_image = utils.common_upscale(latent_image, noise.shape[-1], noise.shape[-2], "bilinear", "center") latent_image = utils.resize_to_batch_size(latent_image, noise.shape[0]) out['c_concat'] = comfy.conds.CONDNoiseShape(latent_image) cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: if cross_attn.shape[-1] != 768: cross_attn = self.cc_projection(cross_attn) out['c_crossattn'] = comfy.conds.CONDCrossAttn(cross_attn) return out class SD_X4Upscaler(BaseModel): def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None): super().__init__(model_config, model_type, device=device) self.noise_augmentor = ImageConcatWithNoiseAugmentation(noise_schedule_config={"linear_start": 0.0001, "linear_end": 0.02}, max_noise_level=350) def extra_conds(self, **kwargs): out = {} image = kwargs.get("concat_image", None) noise = kwargs.get("noise", None) noise_augment = kwargs.get("noise_augmentation", 0.0) device = kwargs["device"] seed = kwargs["seed"] - 10 noise_level = round((self.noise_augmentor.max_noise_level) * noise_augment) if image is None: image = torch.zeros_like(noise)[:,:3] if image.shape[1:] != noise.shape[1:]: image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") noise_level = torch.tensor([noise_level], device=device) if noise_augment > 0: image, noise_level = self.noise_augmentor(image.to(device), noise_level=noise_level, seed=seed) image = utils.resize_to_batch_size(image, noise.shape[0]) out['c_concat'] = comfy.conds.CONDNoiseShape(image) out['y'] = comfy.conds.CONDRegular(noise_level) return out class IP2P: def concat_cond(self, **kwargs): image = kwargs.get("concat_latent_image", None) noise = kwargs.get("noise", None) device = kwargs["device"] if image is None: image = torch.zeros_like(noise) if image.shape[1:] != noise.shape[1:]: image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") image = utils.resize_to_batch_size(image, noise.shape[0]) return self.process_ip2p_image_in(image) class SD15_instructpix2pix(IP2P, BaseModel): def __init__(self, model_config, model_type=ModelType.EPS, device=None): super().__init__(model_config, model_type, device=device) self.process_ip2p_image_in = lambda image: image class SDXL_instructpix2pix(IP2P, SDXL): def __init__(self, model_config, model_type=ModelType.EPS, device=None): super().__init__(model_config, model_type, device=device) if model_type == ModelType.V_PREDICTION_EDM: self.process_ip2p_image_in = lambda image: comfy.latent_formats.SDXL().process_in(image) #cosxl ip2p else: self.process_ip2p_image_in = lambda image: image #diffusers ip2p class StableCascade_C(BaseModel): def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None): super().__init__(model_config, model_type, device=device, unet_model=StageC) self.diffusion_model.eval().requires_grad_(False) def extra_conds(self, **kwargs): out = {} clip_text_pooled = kwargs["pooled_output"] if clip_text_pooled is not None: out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled) if "unclip_conditioning" in kwargs: embeds = [] for unclip_cond in kwargs["unclip_conditioning"]: weight = unclip_cond["strength"] embeds.append(unclip_cond["clip_vision_output"].image_embeds.unsqueeze(0) * weight) clip_img = torch.cat(embeds, dim=1) else: clip_img = torch.zeros((1, 1, 768)) out["clip_img"] = comfy.conds.CONDRegular(clip_img) out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,))) out["crp"] = comfy.conds.CONDRegular(torch.zeros((1,))) cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: out['clip_text'] = comfy.conds.CONDCrossAttn(cross_attn) return out class StableCascade_B(BaseModel): def __init__(self, model_config, model_type=ModelType.STABLE_CASCADE, device=None): super().__init__(model_config, model_type, device=device, unet_model=StageB) self.diffusion_model.eval().requires_grad_(False) def extra_conds(self, **kwargs): out = {} noise = kwargs.get("noise", None) clip_text_pooled = kwargs["pooled_output"] if clip_text_pooled is not None: out['clip'] = comfy.conds.CONDRegular(clip_text_pooled) #size of prior doesn't really matter if zeros because it gets resized but I still want it to get batched prior = kwargs.get("stable_cascade_prior", torch.zeros((1, 16, (noise.shape[2] * 4) // 42, (noise.shape[3] * 4) // 42), dtype=noise.dtype, layout=noise.layout, device=noise.device)) out["effnet"] = comfy.conds.CONDRegular(prior) out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,))) return out class SD3(BaseModel): def __init__(self, model_config, model_type=ModelType.FLOW, device=None): super().__init__(model_config, model_type, device=device, unet_model=OpenAISignatureMMDITWrapper) def encode_adm(self, **kwargs): return kwargs["pooled_output"] def extra_conds(self, **kwargs): out = super().extra_conds(**kwargs) cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) return out class AuraFlow(BaseModel): def __init__(self, model_config, model_type=ModelType.FLOW, device=None): super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.aura.mmdit.MMDiT) def extra_conds(self, **kwargs): out = super().extra_conds(**kwargs) cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) return out class StableAudio1(BaseModel): def __init__(self, model_config, seconds_start_embedder_weights, seconds_total_embedder_weights, model_type=ModelType.V_PREDICTION_CONTINUOUS, device=None): super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.audio.dit.AudioDiffusionTransformer) self.seconds_start_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512) self.seconds_total_embedder = comfy.ldm.audio.embedders.NumberConditioner(768, min_val=0, max_val=512) self.seconds_start_embedder.load_state_dict(seconds_start_embedder_weights) self.seconds_total_embedder.load_state_dict(seconds_total_embedder_weights) def extra_conds(self, **kwargs): out = {} noise = kwargs.get("noise", None) device = kwargs["device"] seconds_start = kwargs.get("seconds_start", 0) seconds_total = kwargs.get("seconds_total", int(noise.shape[-1] / 21.53)) seconds_start_embed = self.seconds_start_embedder([seconds_start])[0].to(device) seconds_total_embed = self.seconds_total_embedder([seconds_total])[0].to(device) global_embed = torch.cat([seconds_start_embed, seconds_total_embed], dim=-1).reshape((1, -1)) out['global_embed'] = comfy.conds.CONDRegular(global_embed) cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: cross_attn = torch.cat([cross_attn.to(device), seconds_start_embed.repeat((cross_attn.shape[0], 1, 1)), seconds_total_embed.repeat((cross_attn.shape[0], 1, 1))], dim=1) out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) return out def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None): sd = super().state_dict_for_saving(clip_state_dict=clip_state_dict, vae_state_dict=vae_state_dict, clip_vision_state_dict=clip_vision_state_dict) d = {"conditioner.conditioners.seconds_start.": self.seconds_start_embedder.state_dict(), "conditioner.conditioners.seconds_total.": self.seconds_total_embedder.state_dict()} for k in d: s = d[k] for l in s: sd["{}{}".format(k, l)] = s[l] return sd class HunyuanDiT(BaseModel): def __init__(self, model_config, model_type=ModelType.V_PREDICTION, device=None): super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hydit.models.HunYuanDiT) def extra_conds(self, **kwargs): out = super().extra_conds(**kwargs) cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) attention_mask = kwargs.get("attention_mask", None) if attention_mask is not None: out['text_embedding_mask'] = comfy.conds.CONDRegular(attention_mask) conditioning_mt5xl = kwargs.get("conditioning_mt5xl", None) if conditioning_mt5xl is not None: out['encoder_hidden_states_t5'] = comfy.conds.CONDRegular(conditioning_mt5xl) attention_mask_mt5xl = kwargs.get("attention_mask_mt5xl", None) if attention_mask_mt5xl is not None: out['text_embedding_mask_t5'] = comfy.conds.CONDRegular(attention_mask_mt5xl) width = kwargs.get("width", 768) height = kwargs.get("height", 768) crop_w = kwargs.get("crop_w", 0) crop_h = kwargs.get("crop_h", 0) target_width = kwargs.get("target_width", width) target_height = kwargs.get("target_height", height) out['image_meta_size'] = comfy.conds.CONDRegular(torch.FloatTensor([[height, width, target_height, target_width, 0, 0]])) return out class Flux(BaseModel): def __init__(self, model_config, model_type=ModelType.FLUX, device=None): super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.flux.model.Flux) def concat_cond(self, **kwargs): try: #Handle Flux control loras dynamically changing the img_in weight. num_channels = self.diffusion_model.img_in.weight.shape[1] // (self.diffusion_model.patch_size * self.diffusion_model.patch_size) except: #Some cases like tensorrt might not have the weights accessible num_channels = self.model_config.unet_config["in_channels"] out_channels = self.model_config.unet_config["out_channels"] if num_channels <= out_channels: return None image = kwargs.get("concat_latent_image", None) noise = kwargs.get("noise", None) device = kwargs["device"] if image is None: image = torch.zeros_like(noise) image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center") image = utils.resize_to_batch_size(image, noise.shape[0]) image = self.process_latent_in(image) if num_channels <= out_channels * 2: return image #inpaint model mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None)) if mask is None: mask = torch.ones_like(noise)[:, :1] mask = torch.mean(mask, dim=1, keepdim=True) print(mask.shape) mask = utils.common_upscale(mask.to(device), noise.shape[-1] * 8, noise.shape[-2] * 8, "bilinear", "center") mask = mask.view(mask.shape[0], mask.shape[2] // 8, 8, mask.shape[3] // 8, 8).permute(0, 2, 4, 1, 3).reshape(mask.shape[0], -1, mask.shape[2] // 8, mask.shape[3] // 8) mask = utils.resize_to_batch_size(mask, noise.shape[0]) return torch.cat((image, mask), dim=1) def encode_adm(self, **kwargs): return kwargs["pooled_output"] def extra_conds(self, **kwargs): out = super().extra_conds(**kwargs) cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([kwargs.get("guidance", 3.5)])) return out class GenmoMochi(BaseModel): def __init__(self, model_config, model_type=ModelType.FLOW, device=None): super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.genmo.joint_model.asymm_models_joint.AsymmDiTJoint) def extra_conds(self, **kwargs): out = super().extra_conds(**kwargs) attention_mask = kwargs.get("attention_mask", None) if attention_mask is not None: out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item())) cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) return out class LTXV(BaseModel): def __init__(self, model_config, model_type=ModelType.FLUX, device=None): super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.model.LTXVModel) #TODO def extra_conds(self, **kwargs): out = super().extra_conds(**kwargs) attention_mask = kwargs.get("attention_mask", None) if attention_mask is not None: out['attention_mask'] = comfy.conds.CONDRegular(attention_mask) cross_attn = kwargs.get("cross_attn", None) if cross_attn is not None: out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn) guiding_latent = kwargs.get("guiding_latent", None) if guiding_latent is not None: out['guiding_latent'] = comfy.conds.CONDRegular(guiding_latent) out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25)) return out