#This is an example that uses the websockets api to know when a prompt execution is done #Once the prompt execution is done it downloads the images using the /history endpoint import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client) import uuid import json import urllib.request import urllib.parse server_address = "127.0.0.1:8188" client_id = str(uuid.uuid4()) def queue_prompt(prompt): p = {"prompt": prompt, "client_id": client_id} data = json.dumps(p).encode('utf-8') req = urllib.request.Request("http://{}/prompt".format(server_address), data=data) return json.loads(urllib.request.urlopen(req).read()) def get_image(filename, subfolder, folder_type): data = {"filename": filename, "subfolder": subfolder, "type": folder_type} url_values = urllib.parse.urlencode(data) with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response: return response.read() def get_history(prompt_id): with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response: return json.loads(response.read()) def get_images(ws, prompt): prompt_id = queue_prompt(prompt)['prompt_id'] output_images = {} while True: out = ws.recv() if isinstance(out, str): message = json.loads(out) if message['type'] == 'executing': data = message['data'] if data['node'] is None and data['prompt_id'] == prompt_id: break #Execution is done else: continue #previews are binary data history = get_history(prompt_id)[prompt_id] for node_id in history['outputs']: node_output = history['outputs'][node_id] images_output = [] if 'images' in node_output: for image in node_output['images']: image_data = get_image(image['filename'], image['subfolder'], image['type']) images_output.append(image_data) output_images[node_id] = images_output return output_images prompt_text = """ { "3": { "class_type": "KSampler", "inputs": { "cfg": 8, "denoise": 1, "latent_image": [ "5", 0 ], "model": [ "4", 0 ], "negative": [ "7", 0 ], "positive": [ "6", 0 ], "sampler_name": "euler", "scheduler": "normal", "seed": 8566257, "steps": 20 } }, "4": { "class_type": "CheckpointLoaderSimple", "inputs": { "ckpt_name": "v1-5-pruned-emaonly.safetensors" } }, "5": { "class_type": "EmptyLatentImage", "inputs": { "batch_size": 1, "height": 512, "width": 512 } }, "6": { "class_type": "CLIPTextEncode", "inputs": { "clip": [ "4", 1 ], "text": "masterpiece best quality girl" } }, "7": { "class_type": "CLIPTextEncode", "inputs": { "clip": [ "4", 1 ], "text": "bad hands" } }, "8": { "class_type": "VAEDecode", "inputs": { "samples": [ "3", 0 ], "vae": [ "4", 2 ] } }, "9": { "class_type": "SaveImage", "inputs": { "filename_prefix": "ComfyUI", "images": [ "8", 0 ] } } } """ prompt = json.loads(prompt_text) #set the text prompt for our positive CLIPTextEncode prompt["6"]["inputs"]["text"] = "masterpiece best quality man" #set the seed for our KSampler node prompt["3"]["inputs"]["seed"] = 5 ws = websocket.WebSocket() ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id)) images = get_images(ws, prompt) #Commented out code to display the output images: # for node_id in images: # for image_data in images[node_id]: # from PIL import Image # import io # image = Image.open(io.BytesIO(image_data)) # image.show()