""" This file is part of ComfyUI. Copyright (C) 2024 Stability AI This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ import torch import comfy.model_management def cast_bias_weight(s, input): bias = None non_blocking = comfy.model_management.device_should_use_non_blocking(input.device) if s.bias is not None: bias = s.bias.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) if s.bias_function is not None: bias = s.bias_function(bias) weight = s.weight.to(device=input.device, dtype=input.dtype, non_blocking=non_blocking) if s.weight_function is not None: weight = s.weight_function(weight) return weight, bias class CastWeightBiasOp: comfy_cast_weights = False weight_function = None bias_function = None class disable_weight_init: class Linear(torch.nn.Linear, CastWeightBiasOp): def reset_parameters(self): return None def forward_comfy_cast_weights(self, input): weight, bias = cast_bias_weight(self, input) return torch.nn.functional.linear(input, weight, bias) def forward(self, *args, **kwargs): if self.comfy_cast_weights: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) class Conv2d(torch.nn.Conv2d, CastWeightBiasOp): def reset_parameters(self): return None def forward_comfy_cast_weights(self, input): weight, bias = cast_bias_weight(self, input) return self._conv_forward(input, weight, bias) def forward(self, *args, **kwargs): if self.comfy_cast_weights: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) class Conv3d(torch.nn.Conv3d, CastWeightBiasOp): def reset_parameters(self): return None def forward_comfy_cast_weights(self, input): weight, bias = cast_bias_weight(self, input) return self._conv_forward(input, weight, bias) def forward(self, *args, **kwargs): if self.comfy_cast_weights: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) class GroupNorm(torch.nn.GroupNorm, CastWeightBiasOp): def reset_parameters(self): return None def forward_comfy_cast_weights(self, input): weight, bias = cast_bias_weight(self, input) return torch.nn.functional.group_norm(input, self.num_groups, weight, bias, self.eps) def forward(self, *args, **kwargs): if self.comfy_cast_weights: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) class LayerNorm(torch.nn.LayerNorm, CastWeightBiasOp): def reset_parameters(self): return None def forward_comfy_cast_weights(self, input): if self.weight is not None: weight, bias = cast_bias_weight(self, input) else: weight = None bias = None return torch.nn.functional.layer_norm(input, self.normalized_shape, weight, bias, self.eps) def forward(self, *args, **kwargs): if self.comfy_cast_weights: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) class ConvTranspose2d(torch.nn.ConvTranspose2d, CastWeightBiasOp): def reset_parameters(self): return None def forward_comfy_cast_weights(self, input, output_size=None): num_spatial_dims = 2 output_padding = self._output_padding( input, output_size, self.stride, self.padding, self.kernel_size, num_spatial_dims, self.dilation) weight, bias = cast_bias_weight(self, input) return torch.nn.functional.conv_transpose2d( input, weight, bias, self.stride, self.padding, output_padding, self.groups, self.dilation) def forward(self, *args, **kwargs): if self.comfy_cast_weights: return self.forward_comfy_cast_weights(*args, **kwargs) else: return super().forward(*args, **kwargs) @classmethod def conv_nd(s, dims, *args, **kwargs): if dims == 2: return s.Conv2d(*args, **kwargs) elif dims == 3: return s.Conv3d(*args, **kwargs) else: raise ValueError(f"unsupported dimensions: {dims}") class manual_cast(disable_weight_init): class Linear(disable_weight_init.Linear): comfy_cast_weights = True class Conv2d(disable_weight_init.Conv2d): comfy_cast_weights = True class Conv3d(disable_weight_init.Conv3d): comfy_cast_weights = True class GroupNorm(disable_weight_init.GroupNorm): comfy_cast_weights = True class LayerNorm(disable_weight_init.LayerNorm): comfy_cast_weights = True class ConvTranspose2d(disable_weight_init.ConvTranspose2d): comfy_cast_weights = True