from comfy import sd1_clip import comfy.text_encoders.sd3_clip import os from transformers import T5TokenizerFast class T5XXLModel(comfy.text_encoders.sd3_clip.T5XXLModel): def __init__(self, **kwargs): kwargs["attention_mask"] = True super().__init__(**kwargs) class MochiT5XXL(sd1_clip.SD1ClipModel): def __init__(self, device="cpu", dtype=None, model_options={}): super().__init__(device=device, dtype=dtype, name="t5xxl", clip_model=T5XXLModel, model_options=model_options) class T5XXLTokenizer(sd1_clip.SDTokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer") super().__init__(tokenizer_path, embedding_directory=embedding_directory, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=256) class MochiT5Tokenizer(sd1_clip.SD1Tokenizer): def __init__(self, embedding_directory=None, tokenizer_data={}): super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, clip_name="t5xxl", tokenizer=T5XXLTokenizer) def mochi_te(dtype_t5=None, t5xxl_scaled_fp8=None): class MochiTEModel_(MochiT5XXL): def __init__(self, device="cpu", dtype=None, model_options={}): if t5xxl_scaled_fp8 is not None and "t5xxl_scaled_fp8" not in model_options: model_options = model_options.copy() model_options["t5xxl_scaled_fp8"] = t5xxl_scaled_fp8 if dtype is None: dtype = dtype_t5 super().__init__(device=device, dtype=dtype, model_options=model_options) return MochiTEModel_