import torch def convert_lora_bfl_control(sd): #BFL loras for Flux sd_out = {} for k in sd: k_to = "diffusion_model.{}".format(k.replace(".lora_B.bias", ".diff_b").replace("_norm.scale", "_norm.scale.set_weight")) sd_out[k_to] = sd[k] sd_out["diffusion_model.img_in.reshape_weight"] = torch.tensor([sd["img_in.lora_B.weight"].shape[0], sd["img_in.lora_A.weight"].shape[1]]) return sd_out def convert_lora(sd): if "img_in.lora_A.weight" in sd and "single_blocks.0.norm.key_norm.scale" in sd: return convert_lora_bfl_control(sd) return sd