CPU = 0 NO_VRAM = 1 LOW_VRAM = 2 NORMAL_VRAM = 3 HIGH_VRAM = 4 MPS = 5 accelerate_enabled = False vram_state = NORMAL_VRAM total_vram = 0 total_vram_available_mb = -1 import sys import psutil forced_cpu = "--cpu" in sys.argv set_vram_to = NORMAL_VRAM try: import torch total_vram = torch.cuda.mem_get_info(torch.cuda.current_device())[1] / (1024 * 1024) total_ram = psutil.virtual_memory().total / (1024 * 1024) forced_normal_vram = "--normalvram" in sys.argv if not forced_normal_vram and not forced_cpu: if total_vram <= 4096: print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram") set_vram_to = LOW_VRAM elif total_vram > total_ram * 1.1 and total_vram > 14336: print("Enabling highvram mode because your GPU has more vram than your computer has ram. If you don't want this use: --normalvram") vram_state = HIGH_VRAM except: pass try: OOM_EXCEPTION = torch.cuda.OutOfMemoryError except: OOM_EXCEPTION = Exception if "--disable-xformers" in sys.argv: XFORMERS_IS_AVAILBLE = False else: try: import xformers import xformers.ops XFORMERS_IS_AVAILBLE = True except: XFORMERS_IS_AVAILBLE = False ENABLE_PYTORCH_ATTENTION = False if "--use-pytorch-cross-attention" in sys.argv: torch.backends.cuda.enable_math_sdp(True) torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_mem_efficient_sdp(True) ENABLE_PYTORCH_ATTENTION = True XFORMERS_IS_AVAILBLE = False if "--lowvram" in sys.argv: set_vram_to = LOW_VRAM if "--novram" in sys.argv: set_vram_to = NO_VRAM if "--highvram" in sys.argv: vram_state = HIGH_VRAM if set_vram_to == LOW_VRAM or set_vram_to == NO_VRAM: try: import accelerate accelerate_enabled = True vram_state = set_vram_to except Exception as e: import traceback print(traceback.format_exc()) print("ERROR: COULD NOT ENABLE LOW VRAM MODE.") total_vram_available_mb = (total_vram - 1024) // 2 total_vram_available_mb = int(max(256, total_vram_available_mb)) try: if torch.backends.mps.is_available(): vram_state = MPS except: pass if forced_cpu: vram_state = CPU print("Set vram state to:", ["CPU", "NO VRAM", "LOW VRAM", "NORMAL VRAM", "HIGH VRAM", "MPS"][vram_state]) current_loaded_model = None current_gpu_controlnets = [] model_accelerated = False def unload_model(): global current_loaded_model global model_accelerated global current_gpu_controlnets global vram_state if current_loaded_model is not None: if model_accelerated: accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model) model_accelerated = False #never unload models from GPU on high vram if vram_state != HIGH_VRAM: current_loaded_model.model.cpu() current_loaded_model.unpatch_model() current_loaded_model = None if vram_state != HIGH_VRAM: if len(current_gpu_controlnets) > 0: for n in current_gpu_controlnets: n.cpu() current_gpu_controlnets = [] def load_model_gpu(model): global current_loaded_model global vram_state global model_accelerated if model is current_loaded_model: return unload_model() try: real_model = model.patch_model() except Exception as e: model.unpatch_model() raise e current_loaded_model = model if vram_state == CPU: pass elif vram_state == MPS: mps_device = torch.device("mps") real_model.to(mps_device) pass elif vram_state == NORMAL_VRAM or vram_state == HIGH_VRAM: model_accelerated = False real_model.cuda() else: if vram_state == NO_VRAM: device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"}) elif vram_state == LOW_VRAM: device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(total_vram_available_mb), "cpu": "16GiB"}) accelerate.dispatch_model(real_model, device_map=device_map, main_device="cuda") model_accelerated = True return current_loaded_model def load_controlnet_gpu(models): global current_gpu_controlnets global vram_state if vram_state == CPU: return if vram_state == LOW_VRAM or vram_state == NO_VRAM: #don't load controlnets like this if low vram because they will be loaded right before running and unloaded right after return for m in current_gpu_controlnets: if m not in models: m.cpu() device = get_torch_device() current_gpu_controlnets = [] for m in models: current_gpu_controlnets.append(m.to(device)) def load_if_low_vram(model): global vram_state if vram_state == LOW_VRAM or vram_state == NO_VRAM: return model.cuda() return model def unload_if_low_vram(model): global vram_state if vram_state == LOW_VRAM or vram_state == NO_VRAM: return model.cpu() return model def get_torch_device(): if vram_state == MPS: return torch.device("mps") if vram_state == CPU: return torch.device("cpu") else: return torch.cuda.current_device() def get_autocast_device(dev): if hasattr(dev, 'type'): return dev.type return "cuda" def xformers_enabled(): if vram_state == CPU: return False return XFORMERS_IS_AVAILBLE def xformers_enabled_vae(): enabled = xformers_enabled() if not enabled: return False try: #0.0.18 has a bug where Nan is returned when inputs are too big (1152x1920 res images and above) if xformers.version.__version__ == "0.0.18": return False except: pass return enabled def pytorch_attention_enabled(): return ENABLE_PYTORCH_ATTENTION def get_free_memory(dev=None, torch_free_too=False): if dev is None: dev = get_torch_device() if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): mem_free_total = psutil.virtual_memory().available mem_free_torch = mem_free_total else: stats = torch.cuda.memory_stats(dev) mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_cuda, _ = torch.cuda.mem_get_info(dev) mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_cuda + mem_free_torch if torch_free_too: return (mem_free_total, mem_free_torch) else: return mem_free_total def maximum_batch_area(): global vram_state if vram_state == NO_VRAM: return 0 memory_free = get_free_memory() / (1024 * 1024) area = ((memory_free - 1024) * 0.9) / (0.6) return int(max(area, 0)) def cpu_mode(): global vram_state return vram_state == CPU def mps_mode(): global vram_state return vram_state == MPS def should_use_fp16(): if cpu_mode() or mps_mode(): return False #TODO ? if torch.cuda.is_bf16_supported(): return True props = torch.cuda.get_device_properties("cuda") if props.major < 7: return False #FP32 is faster on those cards? nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600"] for x in nvidia_16_series: if x in props.name: return False return True #TODO: might be cleaner to put this somewhere else import threading class InterruptProcessingException(Exception): pass interrupt_processing_mutex = threading.RLock() interrupt_processing = False def interrupt_current_processing(value=True): global interrupt_processing global interrupt_processing_mutex with interrupt_processing_mutex: interrupt_processing = value def processing_interrupted(): global interrupt_processing global interrupt_processing_mutex with interrupt_processing_mutex: return interrupt_processing def throw_exception_if_processing_interrupted(): global interrupt_processing global interrupt_processing_mutex with interrupt_processing_mutex: if interrupt_processing: interrupt_processing = False raise InterruptProcessingException()