import comfy.supported_models import comfy.supported_models_base def count_blocks(state_dict_keys, prefix_string): count = 0 while True: c = False for k in state_dict_keys: if k.startswith(prefix_string.format(count)): c = True break if c == False: break count += 1 return count def calculate_transformer_depth(prefix, state_dict_keys, state_dict): context_dim = None use_linear_in_transformer = False transformer_prefix = prefix + "1.transformer_blocks." transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys))) if len(transformer_keys) > 0: last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}') context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1] use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2 time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack return None def detect_unet_config(state_dict, key_prefix, dtype): state_dict_keys = list(state_dict.keys()) unet_config = { "use_checkpoint": False, "image_size": 32, "use_spatial_transformer": True, "legacy": False } y_input = '{}label_emb.0.0.weight'.format(key_prefix) if y_input in state_dict_keys: unet_config["num_classes"] = "sequential" unet_config["adm_in_channels"] = state_dict[y_input].shape[1] else: unet_config["adm_in_channels"] = None unet_config["dtype"] = dtype model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0] in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1] out_channels = state_dict['{}out.2.weight'.format(key_prefix)].shape[0] num_res_blocks = [] channel_mult = [] attention_resolutions = [] transformer_depth = [] transformer_depth_output = [] context_dim = None use_linear_in_transformer = False video_model = False current_res = 1 count = 0 last_res_blocks = 0 last_channel_mult = 0 input_block_count = count_blocks(state_dict_keys, '{}input_blocks'.format(key_prefix) + '.{}.') for count in range(input_block_count): prefix = '{}input_blocks.{}.'.format(key_prefix, count) prefix_output = '{}output_blocks.{}.'.format(key_prefix, input_block_count - count - 1) block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys))) if len(block_keys) == 0: break block_keys_output = sorted(list(filter(lambda a: a.startswith(prefix_output), state_dict_keys))) if "{}0.op.weight".format(prefix) in block_keys: #new layer num_res_blocks.append(last_res_blocks) channel_mult.append(last_channel_mult) current_res *= 2 last_res_blocks = 0 last_channel_mult = 0 out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) if out is not None: transformer_depth_output.append(out[0]) else: transformer_depth_output.append(0) else: res_block_prefix = "{}0.in_layers.0.weight".format(prefix) if res_block_prefix in block_keys: last_res_blocks += 1 last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels out = calculate_transformer_depth(prefix, state_dict_keys, state_dict) if out is not None: transformer_depth.append(out[0]) if context_dim is None: context_dim = out[1] use_linear_in_transformer = out[2] video_model = out[3] else: transformer_depth.append(0) res_block_prefix = "{}0.in_layers.0.weight".format(prefix_output) if res_block_prefix in block_keys_output: out = calculate_transformer_depth(prefix_output, state_dict_keys, state_dict) if out is not None: transformer_depth_output.append(out[0]) else: transformer_depth_output.append(0) num_res_blocks.append(last_res_blocks) channel_mult.append(last_channel_mult) if "{}middle_block.1.proj_in.weight".format(key_prefix) in state_dict_keys: transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}') else: transformer_depth_middle = -1 unet_config["in_channels"] = in_channels unet_config["out_channels"] = out_channels unet_config["model_channels"] = model_channels unet_config["num_res_blocks"] = num_res_blocks unet_config["transformer_depth"] = transformer_depth unet_config["transformer_depth_output"] = transformer_depth_output unet_config["channel_mult"] = channel_mult unet_config["transformer_depth_middle"] = transformer_depth_middle unet_config['use_linear_in_transformer'] = use_linear_in_transformer unet_config["context_dim"] = context_dim if video_model: unet_config["extra_ff_mix_layer"] = True unet_config["use_spatial_context"] = True unet_config["merge_strategy"] = "learned_with_images" unet_config["merge_factor"] = 0.0 unet_config["video_kernel_size"] = [3, 1, 1] unet_config["use_temporal_resblock"] = True unet_config["use_temporal_attention"] = True else: unet_config["use_temporal_resblock"] = False unet_config["use_temporal_attention"] = False return unet_config def model_config_from_unet_config(unet_config): for model_config in comfy.supported_models.models: if model_config.matches(unet_config): return model_config(unet_config) print("no match", unet_config) return None def model_config_from_unet(state_dict, unet_key_prefix, dtype, use_base_if_no_match=False): unet_config = detect_unet_config(state_dict, unet_key_prefix, dtype) model_config = model_config_from_unet_config(unet_config) if model_config is None and use_base_if_no_match: return comfy.supported_models_base.BASE(unet_config) else: return model_config def convert_config(unet_config): new_config = unet_config.copy() num_res_blocks = new_config.get("num_res_blocks", None) channel_mult = new_config.get("channel_mult", None) if isinstance(num_res_blocks, int): num_res_blocks = len(channel_mult) * [num_res_blocks] if "attention_resolutions" in new_config: attention_resolutions = new_config.pop("attention_resolutions") transformer_depth = new_config.get("transformer_depth", None) transformer_depth_middle = new_config.get("transformer_depth_middle", None) if isinstance(transformer_depth, int): transformer_depth = len(channel_mult) * [transformer_depth] if transformer_depth_middle is None: transformer_depth_middle = transformer_depth[-1] t_in = [] t_out = [] s = 1 for i in range(len(num_res_blocks)): res = num_res_blocks[i] d = 0 if s in attention_resolutions: d = transformer_depth[i] t_in += [d] * res t_out += [d] * (res + 1) s *= 2 transformer_depth = t_in transformer_depth_output = t_out new_config["transformer_depth"] = t_in new_config["transformer_depth_output"] = t_out new_config["transformer_depth_middle"] = transformer_depth_middle new_config["num_res_blocks"] = num_res_blocks return new_config def unet_config_from_diffusers_unet(state_dict, dtype): match = {} transformer_depth = [] attn_res = 1 down_blocks = count_blocks(state_dict, "down_blocks.{}") for i in range(down_blocks): attn_blocks = count_blocks(state_dict, "down_blocks.{}.attentions.".format(i) + '{}') for ab in range(attn_blocks): transformer_count = count_blocks(state_dict, "down_blocks.{}.attentions.{}.transformer_blocks.".format(i, ab) + '{}') transformer_depth.append(transformer_count) if transformer_count > 0: match["context_dim"] = state_dict["down_blocks.{}.attentions.{}.transformer_blocks.0.attn2.to_k.weight".format(i, ab)].shape[1] attn_res *= 2 if attn_blocks == 0: transformer_depth.append(0) transformer_depth.append(0) match["transformer_depth"] = transformer_depth match["model_channels"] = state_dict["conv_in.weight"].shape[0] match["in_channels"] = state_dict["conv_in.weight"].shape[1] match["adm_in_channels"] = None if "class_embedding.linear_1.weight" in state_dict: match["adm_in_channels"] = state_dict["class_embedding.linear_1.weight"].shape[1] elif "add_embedding.linear_1.weight" in state_dict: match["adm_in_channels"] = state_dict["add_embedding.linear_1.weight"].shape[1] SDXL = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], 'use_temporal_attention': False, 'use_temporal_resblock': False} SDXL_refiner = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2560, 'dtype': dtype, 'in_channels': 4, 'model_channels': 384, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [0, 0, 4, 4, 4, 4, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 4, 'use_linear_in_transformer': True, 'context_dim': 1280, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 4, 4, 4, 4, 4, 4, 0, 0, 0], 'use_temporal_attention': False, 'use_temporal_resblock': False} SD21 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], 'use_temporal_attention': False, 'use_temporal_resblock': False} SD21_uncliph = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2048, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], 'use_temporal_attention': False, 'use_temporal_resblock': False} SD21_unclipl = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 1536, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 1024, 'num_head_channels': 64, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], 'use_temporal_attention': False, 'use_temporal_resblock': False} SD15 = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'adm_in_channels': None, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2, 2], 'transformer_depth': [1, 1, 1, 1, 1, 1, 0, 0], 'channel_mult': [1, 2, 4, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': False, 'context_dim': 768, 'num_heads': 8, 'transformer_depth_output': [1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0], 'use_temporal_attention': False, 'use_temporal_resblock': False} SDXL_mid_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 1, 1], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 1, 1, 1], 'use_temporal_attention': False, 'use_temporal_resblock': False} SDXL_small_cnet = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 0, 0, 0, 0], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 0, 'use_linear_in_transformer': True, 'num_head_channels': 64, 'context_dim': 1, 'transformer_depth_output': [0, 0, 0, 0, 0, 0, 0, 0, 0], 'use_temporal_attention': False, 'use_temporal_resblock': False} SDXL_diffusers_inpaint = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 9, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 10, 10], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': 10, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'transformer_depth_output': [0, 0, 0, 2, 2, 2, 10, 10, 10], 'use_temporal_attention': False, 'use_temporal_resblock': False} SSD_1B = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 2, 2, 4, 4], 'transformer_depth_output': [0, 0, 0, 1, 1, 2, 10, 4, 4], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'use_temporal_attention': False, 'use_temporal_resblock': False} Segmind_Vega = {'use_checkpoint': False, 'image_size': 32, 'out_channels': 4, 'use_spatial_transformer': True, 'legacy': False, 'num_classes': 'sequential', 'adm_in_channels': 2816, 'dtype': dtype, 'in_channels': 4, 'model_channels': 320, 'num_res_blocks': [2, 2, 2], 'transformer_depth': [0, 0, 1, 1, 2, 2], 'transformer_depth_output': [0, 0, 0, 1, 1, 1, 2, 2, 2], 'channel_mult': [1, 2, 4], 'transformer_depth_middle': -1, 'use_linear_in_transformer': True, 'context_dim': 2048, 'num_head_channels': 64, 'use_temporal_attention': False, 'use_temporal_resblock': False} supported_models = [SDXL, SDXL_refiner, SD21, SD15, SD21_uncliph, SD21_unclipl, SDXL_mid_cnet, SDXL_small_cnet, SDXL_diffusers_inpaint, SSD_1B, Segmind_Vega] for unet_config in supported_models: matches = True for k in match: if match[k] != unet_config[k]: matches = False break if matches: return convert_config(unet_config) return None def model_config_from_diffusers_unet(state_dict, dtype): unet_config = unet_config_from_diffusers_unet(state_dict, dtype) if unet_config is not None: return model_config_from_unet_config(unet_config) return None