import psutil from enum import Enum from comfy.cli_args import args import comfy.utils import torch import sys class VRAMState(Enum): DISABLED = 0 #No vram present: no need to move models to vram NO_VRAM = 1 #Very low vram: enable all the options to save vram LOW_VRAM = 2 NORMAL_VRAM = 3 HIGH_VRAM = 4 SHARED = 5 #No dedicated vram: memory shared between CPU and GPU but models still need to be moved between both. class CPUState(Enum): GPU = 0 CPU = 1 MPS = 2 # Determine VRAM State vram_state = VRAMState.NORMAL_VRAM set_vram_to = VRAMState.NORMAL_VRAM cpu_state = CPUState.GPU total_vram = 0 lowvram_available = True xpu_available = False directml_enabled = False if args.directml is not None: import torch_directml directml_enabled = True device_index = args.directml if device_index < 0: directml_device = torch_directml.device() else: directml_device = torch_directml.device(device_index) print("Using directml with device:", torch_directml.device_name(device_index)) # torch_directml.disable_tiled_resources(True) lowvram_available = False #TODO: need to find a way to get free memory in directml before this can be enabled by default. try: import intel_extension_for_pytorch as ipex if torch.xpu.is_available(): xpu_available = True except: pass try: if torch.backends.mps.is_available(): cpu_state = CPUState.MPS import torch.mps except: pass if args.cpu: cpu_state = CPUState.CPU def is_intel_xpu(): global cpu_state global xpu_available if cpu_state == CPUState.GPU: if xpu_available: return True return False def get_torch_device(): global directml_enabled global cpu_state if directml_enabled: global directml_device return directml_device if cpu_state == CPUState.MPS: return torch.device("mps") if cpu_state == CPUState.CPU: return torch.device("cpu") else: if is_intel_xpu(): return torch.device("xpu") else: return torch.device(torch.cuda.current_device()) def get_total_memory(dev=None, torch_total_too=False): global directml_enabled if dev is None: dev = get_torch_device() if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): mem_total = psutil.virtual_memory().total mem_total_torch = mem_total else: if directml_enabled: mem_total = 1024 * 1024 * 1024 #TODO mem_total_torch = mem_total elif is_intel_xpu(): stats = torch.xpu.memory_stats(dev) mem_reserved = stats['reserved_bytes.all.current'] mem_total = torch.xpu.get_device_properties(dev).total_memory mem_total_torch = mem_reserved else: stats = torch.cuda.memory_stats(dev) mem_reserved = stats['reserved_bytes.all.current'] _, mem_total_cuda = torch.cuda.mem_get_info(dev) mem_total_torch = mem_reserved mem_total = mem_total_cuda if torch_total_too: return (mem_total, mem_total_torch) else: return mem_total total_vram = get_total_memory(get_torch_device()) / (1024 * 1024) total_ram = psutil.virtual_memory().total / (1024 * 1024) print("Total VRAM {:0.0f} MB, total RAM {:0.0f} MB".format(total_vram, total_ram)) if not args.normalvram and not args.cpu: if lowvram_available and total_vram <= 4096: print("Trying to enable lowvram mode because your GPU seems to have 4GB or less. If you don't want this use: --normalvram") set_vram_to = VRAMState.LOW_VRAM try: OOM_EXCEPTION = torch.cuda.OutOfMemoryError except: OOM_EXCEPTION = Exception XFORMERS_VERSION = "" XFORMERS_ENABLED_VAE = True if args.disable_xformers: XFORMERS_IS_AVAILABLE = False else: try: import xformers import xformers.ops XFORMERS_IS_AVAILABLE = True try: XFORMERS_VERSION = xformers.version.__version__ print("xformers version:", XFORMERS_VERSION) if XFORMERS_VERSION.startswith("0.0.18"): print() print("WARNING: This version of xformers has a major bug where you will get black images when generating high resolution images.") print("Please downgrade or upgrade xformers to a different version.") print() XFORMERS_ENABLED_VAE = False except: pass except: XFORMERS_IS_AVAILABLE = False def is_nvidia(): global cpu_state if cpu_state == CPUState.GPU: if torch.version.cuda: return True return False ENABLE_PYTORCH_ATTENTION = False if args.use_pytorch_cross_attention: ENABLE_PYTORCH_ATTENTION = True XFORMERS_IS_AVAILABLE = False VAE_DTYPE = torch.float32 try: if is_nvidia(): torch_version = torch.version.__version__ if int(torch_version[0]) >= 2: if ENABLE_PYTORCH_ATTENTION == False and args.use_split_cross_attention == False and args.use_quad_cross_attention == False: ENABLE_PYTORCH_ATTENTION = True if torch.cuda.is_bf16_supported(): VAE_DTYPE = torch.bfloat16 if is_intel_xpu(): if args.use_split_cross_attention == False and args.use_quad_cross_attention == False: ENABLE_PYTORCH_ATTENTION = True except: pass if is_intel_xpu(): VAE_DTYPE = torch.bfloat16 if args.fp16_vae: VAE_DTYPE = torch.float16 elif args.bf16_vae: VAE_DTYPE = torch.bfloat16 elif args.fp32_vae: VAE_DTYPE = torch.float32 if ENABLE_PYTORCH_ATTENTION: torch.backends.cuda.enable_math_sdp(True) torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_mem_efficient_sdp(True) if args.lowvram: set_vram_to = VRAMState.LOW_VRAM lowvram_available = True elif args.novram: set_vram_to = VRAMState.NO_VRAM elif args.highvram or args.gpu_only: vram_state = VRAMState.HIGH_VRAM FORCE_FP32 = False FORCE_FP16 = False if args.force_fp32: print("Forcing FP32, if this improves things please report it.") FORCE_FP32 = True if args.force_fp16: print("Forcing FP16.") FORCE_FP16 = True if lowvram_available: try: import accelerate if set_vram_to in (VRAMState.LOW_VRAM, VRAMState.NO_VRAM): vram_state = set_vram_to except Exception as e: import traceback print(traceback.format_exc()) print("ERROR: LOW VRAM MODE NEEDS accelerate.") lowvram_available = False if cpu_state != CPUState.GPU: vram_state = VRAMState.DISABLED if cpu_state == CPUState.MPS: vram_state = VRAMState.SHARED print(f"Set vram state to: {vram_state.name}") DISABLE_SMART_MEMORY = args.disable_smart_memory if DISABLE_SMART_MEMORY: print("Disabling smart memory management") def get_torch_device_name(device): if hasattr(device, 'type'): if device.type == "cuda": try: allocator_backend = torch.cuda.get_allocator_backend() except: allocator_backend = "" return "{} {} : {}".format(device, torch.cuda.get_device_name(device), allocator_backend) else: return "{}".format(device.type) elif is_intel_xpu(): return "{} {}".format(device, torch.xpu.get_device_name(device)) else: return "CUDA {}: {}".format(device, torch.cuda.get_device_name(device)) try: print("Device:", get_torch_device_name(get_torch_device())) except: print("Could not pick default device.") print("VAE dtype:", VAE_DTYPE) current_loaded_models = [] class LoadedModel: def __init__(self, model): self.model = model self.model_accelerated = False self.device = model.load_device def model_memory(self): return self.model.model_size() def model_memory_required(self, device): if device == self.model.current_device: return 0 else: return self.model_memory() def model_load(self, lowvram_model_memory=0): patch_model_to = None if lowvram_model_memory == 0: patch_model_to = self.device self.model.model_patches_to(self.device) self.model.model_patches_to(self.model.model_dtype()) try: self.real_model = self.model.patch_model(device_to=patch_model_to) #TODO: do something with loras and offloading to CPU except Exception as e: self.model.unpatch_model(self.model.offload_device) self.model_unload() raise e if lowvram_model_memory > 0: print("loading in lowvram mode", lowvram_model_memory/(1024 * 1024)) device_map = accelerate.infer_auto_device_map(self.real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"}) accelerate.dispatch_model(self.real_model, device_map=device_map, main_device=self.device) self.model_accelerated = True if is_intel_xpu() and not args.disable_ipex_optimize: self.real_model = torch.xpu.optimize(self.real_model.eval(), inplace=True, auto_kernel_selection=True, graph_mode=True) return self.real_model def model_unload(self): if self.model_accelerated: accelerate.hooks.remove_hook_from_submodules(self.real_model) self.model_accelerated = False self.model.unpatch_model(self.model.offload_device) self.model.model_patches_to(self.model.offload_device) def __eq__(self, other): return self.model is other.model def minimum_inference_memory(): return (1024 * 1024 * 1024) def unload_model_clones(model): to_unload = [] for i in range(len(current_loaded_models)): if model.is_clone(current_loaded_models[i].model): to_unload = [i] + to_unload for i in to_unload: print("unload clone", i) current_loaded_models.pop(i).model_unload() def free_memory(memory_required, device, keep_loaded=[]): unloaded_model = False for i in range(len(current_loaded_models) -1, -1, -1): if not DISABLE_SMART_MEMORY: if get_free_memory(device) > memory_required: break shift_model = current_loaded_models[i] if shift_model.device == device: if shift_model not in keep_loaded: m = current_loaded_models.pop(i) m.model_unload() del m unloaded_model = True if unloaded_model: soft_empty_cache() def load_models_gpu(models, memory_required=0): global vram_state inference_memory = minimum_inference_memory() extra_mem = max(inference_memory, memory_required) models_to_load = [] models_already_loaded = [] for x in models: loaded_model = LoadedModel(x) if loaded_model in current_loaded_models: index = current_loaded_models.index(loaded_model) current_loaded_models.insert(0, current_loaded_models.pop(index)) models_already_loaded.append(loaded_model) else: if hasattr(x, "model"): print(f"Requested to load {x.model.__class__.__name__}") models_to_load.append(loaded_model) if len(models_to_load) == 0: devs = set(map(lambda a: a.device, models_already_loaded)) for d in devs: if d != torch.device("cpu"): free_memory(extra_mem, d, models_already_loaded) return print(f"Loading {len(models_to_load)} new model{'s' if len(models_to_load) > 1 else ''}") total_memory_required = {} for loaded_model in models_to_load: unload_model_clones(loaded_model.model) total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device) for device in total_memory_required: if device != torch.device("cpu"): free_memory(total_memory_required[device] * 1.3 + extra_mem, device, models_already_loaded) for loaded_model in models_to_load: model = loaded_model.model torch_dev = model.load_device if is_device_cpu(torch_dev): vram_set_state = VRAMState.DISABLED else: vram_set_state = vram_state lowvram_model_memory = 0 if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM): model_size = loaded_model.model_memory_required(torch_dev) current_free_mem = get_free_memory(torch_dev) lowvram_model_memory = int(max(256 * (1024 * 1024), (current_free_mem - 1024 * (1024 * 1024)) / 1.3 )) if model_size > (current_free_mem - inference_memory): #only switch to lowvram if really necessary vram_set_state = VRAMState.LOW_VRAM else: lowvram_model_memory = 0 if vram_set_state == VRAMState.NO_VRAM: lowvram_model_memory = 256 * 1024 * 1024 cur_loaded_model = loaded_model.model_load(lowvram_model_memory) current_loaded_models.insert(0, loaded_model) return def load_model_gpu(model): return load_models_gpu([model]) def cleanup_models(): to_delete = [] for i in range(len(current_loaded_models)): if sys.getrefcount(current_loaded_models[i].model) <= 2: to_delete = [i] + to_delete for i in to_delete: x = current_loaded_models.pop(i) x.model_unload() del x def dtype_size(dtype): dtype_size = 4 if dtype == torch.float16 or dtype == torch.bfloat16: dtype_size = 2 return dtype_size def unet_offload_device(): if vram_state == VRAMState.HIGH_VRAM: return get_torch_device() else: return torch.device("cpu") def unet_inital_load_device(parameters, dtype): torch_dev = get_torch_device() if vram_state == VRAMState.HIGH_VRAM: return torch_dev cpu_dev = torch.device("cpu") if DISABLE_SMART_MEMORY: return cpu_dev model_size = dtype_size(dtype) * parameters mem_dev = get_free_memory(torch_dev) mem_cpu = get_free_memory(cpu_dev) if mem_dev > mem_cpu and model_size < mem_dev: return torch_dev else: return cpu_dev def unet_dtype(device=None, model_params=0): if args.bf16_unet: return torch.bfloat16 if should_use_fp16(device=device, model_params=model_params): return torch.float16 return torch.float32 def text_encoder_offload_device(): if args.gpu_only: return get_torch_device() else: return torch.device("cpu") def text_encoder_device(): if args.gpu_only: return get_torch_device() elif vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.NORMAL_VRAM: if is_intel_xpu(): return torch.device("cpu") if should_use_fp16(prioritize_performance=False): return get_torch_device() else: return torch.device("cpu") else: return torch.device("cpu") def vae_device(): return get_torch_device() def vae_offload_device(): if args.gpu_only: return get_torch_device() else: return torch.device("cpu") def vae_dtype(): global VAE_DTYPE return VAE_DTYPE def get_autocast_device(dev): if hasattr(dev, 'type'): return dev.type return "cuda" def cast_to_device(tensor, device, dtype, copy=False): device_supports_cast = False if tensor.dtype == torch.float32 or tensor.dtype == torch.float16: device_supports_cast = True elif tensor.dtype == torch.bfloat16: if hasattr(device, 'type') and device.type.startswith("cuda"): device_supports_cast = True elif is_intel_xpu(): device_supports_cast = True if device_supports_cast: if copy: if tensor.device == device: return tensor.to(dtype, copy=copy) return tensor.to(device, copy=copy).to(dtype) else: return tensor.to(device).to(dtype) else: return tensor.to(dtype).to(device, copy=copy) def xformers_enabled(): global directml_enabled global cpu_state if cpu_state != CPUState.GPU: return False if is_intel_xpu(): return False if directml_enabled: return False return XFORMERS_IS_AVAILABLE def xformers_enabled_vae(): enabled = xformers_enabled() if not enabled: return False return XFORMERS_ENABLED_VAE def pytorch_attention_enabled(): global ENABLE_PYTORCH_ATTENTION return ENABLE_PYTORCH_ATTENTION def pytorch_attention_flash_attention(): global ENABLE_PYTORCH_ATTENTION if ENABLE_PYTORCH_ATTENTION: #TODO: more reliable way of checking for flash attention? if is_nvidia(): #pytorch flash attention only works on Nvidia return True return False def get_free_memory(dev=None, torch_free_too=False): global directml_enabled if dev is None: dev = get_torch_device() if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'): mem_free_total = psutil.virtual_memory().available mem_free_torch = mem_free_total else: if directml_enabled: mem_free_total = 1024 * 1024 * 1024 #TODO mem_free_torch = mem_free_total elif is_intel_xpu(): stats = torch.xpu.memory_stats(dev) mem_active = stats['active_bytes.all.current'] mem_allocated = stats['allocated_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_torch = mem_reserved - mem_active mem_free_total = torch.xpu.get_device_properties(dev).total_memory - mem_allocated else: stats = torch.cuda.memory_stats(dev) mem_active = stats['active_bytes.all.current'] mem_reserved = stats['reserved_bytes.all.current'] mem_free_cuda, _ = torch.cuda.mem_get_info(dev) mem_free_torch = mem_reserved - mem_active mem_free_total = mem_free_cuda + mem_free_torch if torch_free_too: return (mem_free_total, mem_free_torch) else: return mem_free_total def batch_area_memory(area): if xformers_enabled() or pytorch_attention_flash_attention(): #TODO: these formulas are copied from maximum_batch_area below return (area / 20) * (1024 * 1024) else: return (((area * 0.6) / 0.9) + 1024) * (1024 * 1024) def maximum_batch_area(): global vram_state if vram_state == VRAMState.NO_VRAM: return 0 memory_free = get_free_memory() / (1024 * 1024) if xformers_enabled() or pytorch_attention_flash_attention(): #TODO: this needs to be tweaked area = 20 * memory_free else: #TODO: this formula is because AMD sucks and has memory management issues which might be fixed in the future area = ((memory_free - 1024) * 0.9) / (0.6) return int(max(area, 0)) def cpu_mode(): global cpu_state return cpu_state == CPUState.CPU def mps_mode(): global cpu_state return cpu_state == CPUState.MPS def is_device_cpu(device): if hasattr(device, 'type'): if (device.type == 'cpu'): return True return False def is_device_mps(device): if hasattr(device, 'type'): if (device.type == 'mps'): return True return False def should_use_fp16(device=None, model_params=0, prioritize_performance=True): global directml_enabled if device is not None: if is_device_cpu(device): return False if FORCE_FP16: return True if device is not None: #TODO if is_device_mps(device): return False if FORCE_FP32: return False if directml_enabled: return False if cpu_mode() or mps_mode(): return False #TODO ? if is_intel_xpu(): return True if torch.cuda.is_bf16_supported(): return True props = torch.cuda.get_device_properties("cuda") if props.major < 6: return False fp16_works = False #FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled #when the model doesn't actually fit on the card #TODO: actually test if GP106 and others have the same type of behavior nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"] for x in nvidia_10_series: if x in props.name.lower(): fp16_works = True if fp16_works: free_model_memory = (get_free_memory() * 0.9 - minimum_inference_memory()) if (not prioritize_performance) or model_params * 4 > free_model_memory: return True if props.major < 7: return False #FP16 is just broken on these cards nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX"] for x in nvidia_16_series: if x in props.name: return False return True def soft_empty_cache(force=False): global cpu_state if cpu_state == CPUState.MPS: torch.mps.empty_cache() elif is_intel_xpu(): torch.xpu.empty_cache() elif torch.cuda.is_available(): if force or is_nvidia(): #This seems to make things worse on ROCm so I only do it for cuda torch.cuda.empty_cache() torch.cuda.ipc_collect() def resolve_lowvram_weight(weight, model, key): if weight.device == torch.device("meta"): #lowvram NOTE: this depends on the inner working of the accelerate library so it might break. key_split = key.split('.') # I have no idea why they don't just leave the weight there instead of using the meta device. op = comfy.utils.get_attr(model, '.'.join(key_split[:-1])) weight = op._hf_hook.weights_map[key_split[-1]] return weight #TODO: might be cleaner to put this somewhere else import threading class InterruptProcessingException(Exception): pass interrupt_processing_mutex = threading.RLock() interrupt_processing = False def interrupt_current_processing(value=True): global interrupt_processing global interrupt_processing_mutex with interrupt_processing_mutex: interrupt_processing = value def processing_interrupted(): global interrupt_processing global interrupt_processing_mutex with interrupt_processing_mutex: return interrupt_processing def throw_exception_if_processing_interrupted(): global interrupt_processing global interrupt_processing_mutex with interrupt_processing_mutex: if interrupt_processing: interrupt_processing = False raise InterruptProcessingException()