from typing import Any, Optional import torch import torch.nn as nn import torch.nn.functional as F from torch.utils import checkpoint from comfy.ldm.modules.diffusionmodules.mmdit import ( Mlp, TimestepEmbedder, PatchEmbed, RMSNorm, ) from comfy.ldm.modules.diffusionmodules.util import timestep_embedding from .poolers import AttentionPool import comfy.latent_formats from .models import HunYuanDiTBlock, calc_rope from .posemb_layers import get_2d_rotary_pos_embed, get_fill_resize_and_crop class HunYuanControlNet(nn.Module): """ HunYuanDiT: Diffusion model with a Transformer backbone. Inherit ModelMixin and ConfigMixin to be compatible with the sampler StableDiffusionPipeline of diffusers. Inherit PeftAdapterMixin to be compatible with the PEFT training pipeline. Parameters ---------- args: argparse.Namespace The arguments parsed by argparse. input_size: tuple The size of the input image. patch_size: int The size of the patch. in_channels: int The number of input channels. hidden_size: int The hidden size of the transformer backbone. depth: int The number of transformer blocks. num_heads: int The number of attention heads. mlp_ratio: float The ratio of the hidden size of the MLP in the transformer block. log_fn: callable The logging function. """ def __init__( self, input_size: tuple = 128, patch_size: int = 2, in_channels: int = 4, hidden_size: int = 1408, depth: int = 40, num_heads: int = 16, mlp_ratio: float = 4.3637, text_states_dim=1024, text_states_dim_t5=2048, text_len=77, text_len_t5=256, qk_norm=True, # See http://arxiv.org/abs/2302.05442 for details. size_cond=False, use_style_cond=False, learn_sigma=True, norm="layer", log_fn: callable = print, attn_precision=None, dtype=None, device=None, operations=None, **kwargs, ): super().__init__() self.log_fn = log_fn self.depth = depth self.learn_sigma = learn_sigma self.in_channels = in_channels self.out_channels = in_channels * 2 if learn_sigma else in_channels self.patch_size = patch_size self.num_heads = num_heads self.hidden_size = hidden_size self.text_states_dim = text_states_dim self.text_states_dim_t5 = text_states_dim_t5 self.text_len = text_len self.text_len_t5 = text_len_t5 self.size_cond = size_cond self.use_style_cond = use_style_cond self.norm = norm self.dtype = dtype self.latent_format = comfy.latent_formats.SDXL self.mlp_t5 = nn.Sequential( nn.Linear( self.text_states_dim_t5, self.text_states_dim_t5 * 4, bias=True, dtype=dtype, device=device, ), nn.SiLU(), nn.Linear( self.text_states_dim_t5 * 4, self.text_states_dim, bias=True, dtype=dtype, device=device, ), ) # learnable replace self.text_embedding_padding = nn.Parameter( torch.randn( self.text_len + self.text_len_t5, self.text_states_dim, dtype=dtype, device=device, ) ) # Attention pooling pooler_out_dim = 1024 self.pooler = AttentionPool( self.text_len_t5, self.text_states_dim_t5, num_heads=8, output_dim=pooler_out_dim, dtype=dtype, device=device, operations=operations, ) # Dimension of the extra input vectors self.extra_in_dim = pooler_out_dim if self.size_cond: # Image size and crop size conditions self.extra_in_dim += 6 * 256 if self.use_style_cond: # Here we use a default learned embedder layer for future extension. self.style_embedder = nn.Embedding( 1, hidden_size, dtype=dtype, device=device ) self.extra_in_dim += hidden_size # Text embedding for `add` self.x_embedder = PatchEmbed( input_size, patch_size, in_channels, hidden_size, dtype=dtype, device=device, operations=operations, ) self.t_embedder = TimestepEmbedder( hidden_size, dtype=dtype, device=device, operations=operations ) self.extra_embedder = nn.Sequential( operations.Linear( self.extra_in_dim, hidden_size * 4, dtype=dtype, device=device ), nn.SiLU(), operations.Linear( hidden_size * 4, hidden_size, bias=True, dtype=dtype, device=device ), ) # Image embedding num_patches = self.x_embedder.num_patches # HUnYuanDiT Blocks self.blocks = nn.ModuleList( [ HunYuanDiTBlock( hidden_size=hidden_size, c_emb_size=hidden_size, num_heads=num_heads, mlp_ratio=mlp_ratio, text_states_dim=self.text_states_dim, qk_norm=qk_norm, norm_type=self.norm, skip=False, attn_precision=attn_precision, dtype=dtype, device=device, operations=operations, ) for _ in range(19) ] ) # Input zero linear for the first block self.before_proj = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device) # Output zero linear for the every block self.after_proj_list = nn.ModuleList( [ operations.Linear( self.hidden_size, self.hidden_size, dtype=dtype, device=device ) for _ in range(len(self.blocks)) ] ) def forward( self, x, hint, timesteps, context,#encoder_hidden_states=None, text_embedding_mask=None, encoder_hidden_states_t5=None, text_embedding_mask_t5=None, image_meta_size=None, style=None, return_dict=False, **kwarg, ): """ Forward pass of the encoder. Parameters ---------- x: torch.Tensor (B, D, H, W) t: torch.Tensor (B) encoder_hidden_states: torch.Tensor CLIP text embedding, (B, L_clip, D) text_embedding_mask: torch.Tensor CLIP text embedding mask, (B, L_clip) encoder_hidden_states_t5: torch.Tensor T5 text embedding, (B, L_t5, D) text_embedding_mask_t5: torch.Tensor T5 text embedding mask, (B, L_t5) image_meta_size: torch.Tensor (B, 6) style: torch.Tensor (B) cos_cis_img: torch.Tensor sin_cis_img: torch.Tensor return_dict: bool Whether to return a dictionary. """ condition = hint if condition.shape[0] == 1: condition = torch.repeat_interleave(condition, x.shape[0], dim=0) text_states = context # 2,77,1024 text_states_t5 = encoder_hidden_states_t5 # 2,256,2048 text_states_mask = text_embedding_mask.bool() # 2,77 text_states_t5_mask = text_embedding_mask_t5.bool() # 2,256 b_t5, l_t5, c_t5 = text_states_t5.shape text_states_t5 = self.mlp_t5(text_states_t5.view(-1, c_t5)).view(b_t5, l_t5, -1) padding = comfy.ops.cast_to_input(self.text_embedding_padding, text_states) text_states[:, -self.text_len :] = torch.where( text_states_mask[:, -self.text_len :].unsqueeze(2), text_states[:, -self.text_len :], padding[: self.text_len], ) text_states_t5[:, -self.text_len_t5 :] = torch.where( text_states_t5_mask[:, -self.text_len_t5 :].unsqueeze(2), text_states_t5[:, -self.text_len_t5 :], padding[self.text_len :], ) text_states = torch.cat([text_states, text_states_t5], dim=1) # 2,205,1024 # _, _, oh, ow = x.shape # th, tw = oh // self.patch_size, ow // self.patch_size # Get image RoPE embedding according to `reso`lution. freqs_cis_img = calc_rope( x, self.patch_size, self.hidden_size // self.num_heads ) # (cos_cis_img, sin_cis_img) # ========================= Build time and image embedding ========================= t = self.t_embedder(timesteps, dtype=self.dtype) x = self.x_embedder(x) # ========================= Concatenate all extra vectors ========================= # Build text tokens with pooling extra_vec = self.pooler(encoder_hidden_states_t5) # Build image meta size tokens if applicable # if image_meta_size is not None: # image_meta_size = timestep_embedding(image_meta_size.view(-1), 256) # [B * 6, 256] # if image_meta_size.dtype != self.dtype: # image_meta_size = image_meta_size.half() # image_meta_size = image_meta_size.view(-1, 6 * 256) # extra_vec = torch.cat([extra_vec, image_meta_size], dim=1) # [B, D + 6 * 256] # Build style tokens if style is not None: style_embedding = self.style_embedder(style) extra_vec = torch.cat([extra_vec, style_embedding], dim=1) # Concatenate all extra vectors c = t + self.extra_embedder(extra_vec) # [B, D] # ========================= Deal with Condition ========================= condition = self.x_embedder(condition) # ========================= Forward pass through HunYuanDiT blocks ========================= controls = [] x = x + self.before_proj(condition) # add condition for layer, block in enumerate(self.blocks): x = block(x, c, text_states, freqs_cis_img) controls.append(self.after_proj_list[layer](x)) # zero linear for output return {"output": controls}