#Original code can be found on: https://github.com/XLabs-AI/x-flux/blob/main/src/flux/controlnet.py import torch from torch import Tensor, nn from einops import rearrange, repeat from .layers import (DoubleStreamBlock, EmbedND, LastLayer, MLPEmbedder, SingleStreamBlock, timestep_embedding) from .model import Flux import comfy.ldm.common_dit class ControlNetFlux(Flux): def __init__(self, image_model=None, dtype=None, device=None, operations=None, **kwargs): super().__init__(final_layer=False, dtype=dtype, device=device, operations=operations, **kwargs) # add ControlNet blocks self.controlnet_blocks = nn.ModuleList([]) for _ in range(self.params.depth): controlnet_block = operations.Linear(self.hidden_size, self.hidden_size, dtype=dtype, device=device) # controlnet_block = zero_module(controlnet_block) self.controlnet_blocks.append(controlnet_block) self.pos_embed_input = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device) self.gradient_checkpointing = False self.input_hint_block = nn.Sequential( operations.Conv2d(3, 16, 3, padding=1, dtype=dtype, device=device), nn.SiLU(), operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device), nn.SiLU(), operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device), nn.SiLU(), operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device), nn.SiLU(), operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device), nn.SiLU(), operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device), nn.SiLU(), operations.Conv2d(16, 16, 3, padding=1, stride=2, dtype=dtype, device=device), nn.SiLU(), operations.Conv2d(16, 16, 3, padding=1, dtype=dtype, device=device) ) def forward_orig( self, img: Tensor, img_ids: Tensor, controlnet_cond: Tensor, txt: Tensor, txt_ids: Tensor, timesteps: Tensor, y: Tensor, guidance: Tensor = None, ) -> Tensor: if img.ndim != 3 or txt.ndim != 3: raise ValueError("Input img and txt tensors must have 3 dimensions.") # running on sequences img img = self.img_in(img) controlnet_cond = self.input_hint_block(controlnet_cond) controlnet_cond = rearrange(controlnet_cond, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) controlnet_cond = self.pos_embed_input(controlnet_cond) img = img + controlnet_cond vec = self.time_in(timestep_embedding(timesteps, 256)) if self.params.guidance_embed: vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) vec = vec + self.vector_in(y) txt = self.txt_in(txt) ids = torch.cat((txt_ids, img_ids), dim=1) pe = self.pe_embedder(ids) block_res_samples = () for block in self.double_blocks: img, txt = block(img=img, txt=txt, vec=vec, pe=pe) block_res_samples = block_res_samples + (img,) controlnet_block_res_samples = () for block_res_sample, controlnet_block in zip(block_res_samples, self.controlnet_blocks): block_res_sample = controlnet_block(block_res_sample) controlnet_block_res_samples = controlnet_block_res_samples + (block_res_sample,) return {"input": (controlnet_block_res_samples * 10)[:19]} def forward(self, x, timesteps, context, y, guidance=None, hint=None, **kwargs): hint = hint * 2.0 - 1.0 bs, c, h, w = x.shape patch_size = 2 x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size)) img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size) h_len = ((h + (patch_size // 2)) // patch_size) w_len = ((w + (patch_size // 2)) // patch_size) img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype) img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None] img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :] img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype) return self.forward_orig(img, img_ids, hint, context, txt_ids, timesteps, y, guidance)