from . import supported_models def count_blocks(state_dict_keys, prefix_string): count = 0 while True: c = False for k in state_dict_keys: if k.startswith(prefix_string.format(count)): c = True break if c == False: break count += 1 return count def detect_unet_config(state_dict, key_prefix, use_fp16): state_dict_keys = list(state_dict.keys()) unet_config = { "use_checkpoint": False, "image_size": 32, "out_channels": 4, "use_spatial_transformer": True, "legacy": False } y_input = '{}label_emb.0.0.weight'.format(key_prefix) if y_input in state_dict_keys: unet_config["num_classes"] = "sequential" unet_config["adm_in_channels"] = state_dict[y_input].shape[1] else: unet_config["adm_in_channels"] = None unet_config["use_fp16"] = use_fp16 model_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[0] in_channels = state_dict['{}input_blocks.0.0.weight'.format(key_prefix)].shape[1] num_res_blocks = [] channel_mult = [] attention_resolutions = [] transformer_depth = [] context_dim = None use_linear_in_transformer = False current_res = 1 count = 0 last_res_blocks = 0 last_transformer_depth = 0 last_channel_mult = 0 while True: prefix = '{}input_blocks.{}.'.format(key_prefix, count) block_keys = sorted(list(filter(lambda a: a.startswith(prefix), state_dict_keys))) if len(block_keys) == 0: break if "{}0.op.weight".format(prefix) in block_keys: #new layer if last_transformer_depth > 0: attention_resolutions.append(current_res) transformer_depth.append(last_transformer_depth) num_res_blocks.append(last_res_blocks) channel_mult.append(last_channel_mult) current_res *= 2 last_res_blocks = 0 last_transformer_depth = 0 last_channel_mult = 0 else: res_block_prefix = "{}0.in_layers.0.weight".format(prefix) if res_block_prefix in block_keys: last_res_blocks += 1 last_channel_mult = state_dict["{}0.out_layers.3.weight".format(prefix)].shape[0] // model_channels transformer_prefix = prefix + "1.transformer_blocks." transformer_keys = sorted(list(filter(lambda a: a.startswith(transformer_prefix), state_dict_keys))) if len(transformer_keys) > 0: last_transformer_depth = count_blocks(state_dict_keys, transformer_prefix + '{}') if context_dim is None: context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1] use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2 count += 1 if last_transformer_depth > 0: attention_resolutions.append(current_res) transformer_depth.append(last_transformer_depth) num_res_blocks.append(last_res_blocks) channel_mult.append(last_channel_mult) transformer_depth_middle = count_blocks(state_dict_keys, '{}middle_block.1.transformer_blocks.'.format(key_prefix) + '{}') if len(set(num_res_blocks)) == 1: num_res_blocks = num_res_blocks[0] if len(set(transformer_depth)) == 1: transformer_depth = transformer_depth[0] unet_config["in_channels"] = in_channels unet_config["model_channels"] = model_channels unet_config["num_res_blocks"] = num_res_blocks unet_config["attention_resolutions"] = attention_resolutions unet_config["transformer_depth"] = transformer_depth unet_config["channel_mult"] = channel_mult unet_config["transformer_depth_middle"] = transformer_depth_middle unet_config['use_linear_in_transformer'] = use_linear_in_transformer unet_config["context_dim"] = context_dim return unet_config def model_config_from_unet_config(unet_config): for model_config in supported_models.models: if model_config.matches(unet_config): return model_config(unet_config) return None def model_config_from_unet(state_dict, unet_key_prefix, use_fp16): unet_config = detect_unet_config(state_dict, unet_key_prefix, use_fp16) return model_config_from_unet_config(unet_config)