import torch from typing import Tuple, Callable import math def do_nothing(x: torch.Tensor, mode:str=None): return x def bipartite_soft_matching_random2d(metric: torch.Tensor, w: int, h: int, sx: int, sy: int, r: int, no_rand: bool = False) -> Tuple[Callable, Callable]: """ Partitions the tokens into src and dst and merges r tokens from src to dst. Dst tokens are partitioned by choosing one randomy in each (sx, sy) region. Args: - metric [B, N, C]: metric to use for similarity - w: image width in tokens - h: image height in tokens - sx: stride in the x dimension for dst, must divide w - sy: stride in the y dimension for dst, must divide h - r: number of tokens to remove (by merging) - no_rand: if true, disable randomness (use top left corner only) """ B, N, _ = metric.shape if r <= 0: return do_nothing, do_nothing with torch.no_grad(): hsy, wsx = h // sy, w // sx # For each sy by sx kernel, randomly assign one token to be dst and the rest src idx_buffer = torch.zeros(1, hsy, wsx, sy*sx, 1, device=metric.device) if no_rand: rand_idx = torch.zeros(1, hsy, wsx, 1, 1, device=metric.device, dtype=torch.int64) else: rand_idx = torch.randint(sy*sx, size=(1, hsy, wsx, 1, 1), device=metric.device) idx_buffer.scatter_(dim=3, index=rand_idx, src=-torch.ones_like(rand_idx, dtype=idx_buffer.dtype)) idx_buffer = idx_buffer.view(1, hsy, wsx, sy, sx, 1).transpose(2, 3).reshape(1, N, 1) rand_idx = idx_buffer.argsort(dim=1) num_dst = int((1 / (sx*sy)) * N) a_idx = rand_idx[:, num_dst:, :] # src b_idx = rand_idx[:, :num_dst, :] # dst def split(x): C = x.shape[-1] src = x.gather(dim=1, index=a_idx.expand(B, N - num_dst, C)) dst = x.gather(dim=1, index=b_idx.expand(B, num_dst, C)) return src, dst metric = metric / metric.norm(dim=-1, keepdim=True) a, b = split(metric) scores = a @ b.transpose(-1, -2) # Can't reduce more than the # tokens in src r = min(a.shape[1], r) node_max, node_idx = scores.max(dim=-1) edge_idx = node_max.argsort(dim=-1, descending=True)[..., None] unm_idx = edge_idx[..., r:, :] # Unmerged Tokens src_idx = edge_idx[..., :r, :] # Merged Tokens dst_idx = node_idx[..., None].gather(dim=-2, index=src_idx) def merge(x: torch.Tensor, mode="mean") -> torch.Tensor: src, dst = split(x) n, t1, c = src.shape unm = src.gather(dim=-2, index=unm_idx.expand(n, t1 - r, c)) src = src.gather(dim=-2, index=src_idx.expand(n, r, c)) dst = dst.scatter_reduce(-2, dst_idx.expand(n, r, c), src, reduce=mode) return torch.cat([unm, dst], dim=1) def unmerge(x: torch.Tensor) -> torch.Tensor: unm_len = unm_idx.shape[1] unm, dst = x[..., :unm_len, :], x[..., unm_len:, :] _, _, c = unm.shape src = dst.gather(dim=-2, index=dst_idx.expand(B, r, c)) # Combine back to the original shape out = torch.zeros(B, N, c, device=x.device, dtype=x.dtype) out.scatter_(dim=-2, index=b_idx.expand(B, num_dst, c), src=dst) out.scatter_(dim=-2, index=a_idx.expand(B, a_idx.shape[1], 1).gather(dim=1, index=unm_idx).expand(B, unm_len, c), src=unm) out.scatter_(dim=-2, index=a_idx.expand(B, a_idx.shape[1], 1).gather(dim=1, index=src_idx).expand(B, r, c), src=src) return out return merge, unmerge def get_functions(x, ratio, original_shape): b, c, original_h, original_w = original_shape original_tokens = original_h * original_w downsample = int(math.sqrt(original_tokens // x.shape[1])) stride_x = 2 stride_y = 2 max_downsample = 1 if downsample <= max_downsample: w = original_w // downsample h = original_h // downsample r = int(x.shape[1] * ratio) no_rand = False m, u = bipartite_soft_matching_random2d(x, w, h, stride_x, stride_y, r, no_rand) return m, u nothing = lambda y: y return nothing, nothing