import torch from nodes import MAX_RESOLUTION class LatentCompositeMasked: @classmethod def INPUT_TYPES(s): return { "required": { "destination": ("LATENT",), "source": ("LATENT",), "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}), }, "optional": { "mask": ("MASK",), } } RETURN_TYPES = ("LATENT",) FUNCTION = "composite" CATEGORY = "latent" def composite(self, destination, source, x, y, mask = None): output = destination.copy() destination = destination["samples"].clone() source = source["samples"] x = max(-source.shape[3] * 8, min(x, destination.shape[3] * 8)) y = max(-source.shape[2] * 8, min(y, destination.shape[2] * 8)) left, top = (x // 8, y // 8) right, bottom = (left + source.shape[3], top + source.shape[2],) if mask is None: mask = torch.ones_like(source) else: mask = mask.clone() mask = torch.nn.functional.interpolate(mask[None, None], size=(source.shape[2], source.shape[3]), mode="bilinear") mask = mask.repeat((source.shape[0], source.shape[1], 1, 1)) # calculate the bounds of the source that will be overlapping the destination # this prevents the source trying to overwrite latent pixels that are out of bounds # of the destination visible_width, visible_height = (destination.shape[3] - left + min(0, x), destination.shape[2] - top + min(0, y),) mask = mask[:, :, :visible_height, :visible_width] inverse_mask = torch.ones_like(mask) - mask source_portion = mask * source[:, :, :visible_height, :visible_width] destination_portion = inverse_mask * destination[:, :, top:bottom, left:right] destination[:, :, top:bottom, left:right] = source_portion + destination_portion output["samples"] = destination return (output,) class MaskToImage: @classmethod def INPUT_TYPES(s): return { "required": { "mask": ("MASK",), } } CATEGORY = "mask" RETURN_TYPES = ("IMAGE",) FUNCTION = "mask_to_image" def mask_to_image(self, mask): result = mask[None, :, :, None].expand(-1, -1, -1, 3) return (result,) class ImageToMask: @classmethod def INPUT_TYPES(s): return { "required": { "image": ("IMAGE",), "channel": (["red", "green", "blue"],), } } CATEGORY = "mask" RETURN_TYPES = ("MASK",) FUNCTION = "image_to_mask" def image_to_mask(self, image, channel): channels = ["red", "green", "blue"] mask = image[0, :, :, channels.index(channel)] return (mask,) class SolidMask: @classmethod def INPUT_TYPES(cls): return { "required": { "value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}), "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), } } CATEGORY = "mask" RETURN_TYPES = ("MASK",) FUNCTION = "solid" def solid(self, value, width, height): out = torch.full((height, width), value, dtype=torch.float32, device="cpu") return (out,) class InvertMask: @classmethod def INPUT_TYPES(cls): return { "required": { "mask": ("MASK",), } } CATEGORY = "mask" RETURN_TYPES = ("MASK",) FUNCTION = "invert" def invert(self, mask): out = 1.0 - mask return (out,) class CropMask: @classmethod def INPUT_TYPES(cls): return { "required": { "mask": ("MASK",), "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}), } } CATEGORY = "mask" RETURN_TYPES = ("MASK",) FUNCTION = "crop" def crop(self, mask, x, y, width, height): out = mask[y:y + height, x:x + width] return (out,) class MaskComposite: @classmethod def INPUT_TYPES(cls): return { "required": { "destination": ("MASK",), "source": ("MASK",), "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), "operation": (["multiply", "add", "subtract"],), } } CATEGORY = "mask" RETURN_TYPES = ("MASK",) FUNCTION = "combine" def combine(self, destination, source, x, y, operation): output = destination.clone() left, top = (x, y,) right, bottom = (min(left + source.shape[1], destination.shape[1]), min(top + source.shape[0], destination.shape[0])) visible_width, visible_height = (right - left, bottom - top,) source_portion = source[:visible_height, :visible_width] destination_portion = destination[top:bottom, left:right] match operation: case "multiply": output[top:bottom, left:right] = destination_portion * source_portion case "add": output[top:bottom, left:right] = destination_portion + source_portion case "subtract": output[top:bottom, left:right] = destination_portion - source_portion output = torch.clamp(output, 0.0, 1.0) return (output,) class FeatherMask: @classmethod def INPUT_TYPES(cls): return { "required": { "mask": ("MASK",), "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 1}), } } CATEGORY = "mask" RETURN_TYPES = ("MASK",) FUNCTION = "feather" def feather(self, mask, left, top, right, bottom): output = mask.clone() left = min(left, output.shape[1]) right = min(right, output.shape[1]) top = min(top, output.shape[0]) bottom = min(bottom, output.shape[0]) for x in range(left): feather_rate = (x + 1.0) / left output[:, x] *= feather_rate for x in range(right): feather_rate = (x + 1) / right output[:, -x] *= feather_rate for y in range(top): feather_rate = (y + 1) / top output[y, :] *= feather_rate for y in range(bottom): feather_rate = (y + 1) / bottom output[-y, :] *= feather_rate return (output,) NODE_CLASS_MAPPINGS = { "LatentCompositeMasked": LatentCompositeMasked, "MaskToImage": MaskToImage, "ImageToMask": ImageToMask, "SolidMask": SolidMask, "InvertMask": InvertMask, "CropMask": CropMask, "MaskComposite": MaskComposite, "FeatherMask": FeatherMask, } NODE_DISPLAY_NAME_MAPPINGS = { "ImageToMask": "Convert Image to Mask", "MaskToImage": "Convert Mask to Image", }