import torch from typing import Callable, Protocol, TypedDict, Optional, List class UnetApplyFunction(Protocol): """Function signature protocol on comfy.model_base.BaseModel.apply_model""" def __call__(self, x: torch.Tensor, t: torch.Tensor, **kwargs) -> torch.Tensor: pass class UnetApplyConds(TypedDict): """Optional conditions for unet apply function.""" c_concat: Optional[torch.Tensor] c_crossattn: Optional[torch.Tensor] control: Optional[torch.Tensor] transformer_options: Optional[dict] class UnetParams(TypedDict): # Tensor of shape [B, C, H, W] input: torch.Tensor # Tensor of shape [B] timestep: torch.Tensor c: UnetApplyConds # List of [0, 1], [0], [1], ... # 0 means unconditional, 1 means conditional cond_or_uncond: List[int] UnetWrapperFunction = Callable[[UnetApplyFunction, UnetParams], torch.Tensor]