import torch import comfy.model_management import comfy.sampler_helpers import comfy.samplers import comfy.utils import node_helpers def perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_nocond, neg_scale, cond_scale): pos = noise_pred_pos - noise_pred_nocond neg = noise_pred_neg - noise_pred_nocond perp = neg - ((torch.mul(neg, pos).sum())/(torch.norm(pos)**2)) * pos perp_neg = perp * neg_scale cfg_result = noise_pred_nocond + cond_scale*(pos - perp_neg) return cfg_result #TODO: This node should be removed, it has been replaced with PerpNegGuider class PerpNeg: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL", ), "empty_conditioning": ("CONDITIONING", ), "neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), }} RETURN_TYPES = ("MODEL",) FUNCTION = "patch" CATEGORY = "_for_testing" DEPRECATED = True def patch(self, model, empty_conditioning, neg_scale): m = model.clone() nocond = comfy.sampler_helpers.convert_cond(empty_conditioning) def cfg_function(args): model = args["model"] noise_pred_pos = args["cond_denoised"] noise_pred_neg = args["uncond_denoised"] cond_scale = args["cond_scale"] x = args["input"] sigma = args["sigma"] model_options = args["model_options"] nocond_processed = comfy.samplers.encode_model_conds(model.extra_conds, nocond, x, x.device, "negative") (noise_pred_nocond,) = comfy.samplers.calc_cond_batch(model, [nocond_processed], x, sigma, model_options) cfg_result = x - perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_nocond, neg_scale, cond_scale) return cfg_result m.set_model_sampler_cfg_function(cfg_function) return (m, ) class Guider_PerpNeg(comfy.samplers.CFGGuider): def set_conds(self, positive, negative, empty_negative_prompt): empty_negative_prompt = node_helpers.conditioning_set_values(empty_negative_prompt, {"prompt_type": "negative"}) self.inner_set_conds({"positive": positive, "empty_negative_prompt": empty_negative_prompt, "negative": negative}) def set_cfg(self, cfg, neg_scale): self.cfg = cfg self.neg_scale = neg_scale def predict_noise(self, x, timestep, model_options={}, seed=None): # in CFGGuider.predict_noise, we call sampling_function(), which uses cfg_function() to compute pos & neg # but we'd rather do a single batch of sampling pos, neg, and empty, so we call calc_cond_batch([pos,neg,empty]) directly positive_cond = self.conds.get("positive", None) negative_cond = self.conds.get("negative", None) empty_cond = self.conds.get("empty_negative_prompt", None) (noise_pred_pos, noise_pred_neg, noise_pred_empty) = \ comfy.samplers.calc_cond_batch(self.inner_model, [positive_cond, negative_cond, empty_cond], x, timestep, model_options) cfg_result = perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_empty, self.neg_scale, self.cfg) # normally this would be done in cfg_function, but we skipped # that for efficiency: we can compute the noise predictions in # a single call to calc_cond_batch() (rather than two) # so we replicate the hook here for fn in model_options.get("sampler_post_cfg_function", []): args = { "denoised": cfg_result, "cond": positive_cond, "uncond": negative_cond, "model": self.inner_model, "uncond_denoised": noise_pred_neg, "cond_denoised": noise_pred_pos, "sigma": timestep, "model_options": model_options, "input": x, # not in the original call in samplers.py:cfg_function, but made available for future hooks "empty_cond": empty_cond, "empty_cond_denoised": noise_pred_empty,} cfg_result = fn(args) return cfg_result class PerpNegGuider: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), "positive": ("CONDITIONING", ), "negative": ("CONDITIONING", ), "empty_conditioning": ("CONDITIONING", ), "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}), "neg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), } } RETURN_TYPES = ("GUIDER",) FUNCTION = "get_guider" CATEGORY = "_for_testing" def get_guider(self, model, positive, negative, empty_conditioning, cfg, neg_scale): guider = Guider_PerpNeg(model) guider.set_conds(positive, negative, empty_conditioning) guider.set_cfg(cfg, neg_scale) return (guider,) NODE_CLASS_MAPPINGS = { "PerpNeg": PerpNeg, "PerpNegGuider": PerpNegGuider, } NODE_DISPLAY_NAME_MAPPINGS = { "PerpNeg": "Perp-Neg (DEPRECATED by PerpNegGuider)", }