Add a denoise parameter to the SDTurboScheduler.
This commit is contained in:
parent
ba3f3aa1ca
commit
e82942cc29
|
@ -87,6 +87,7 @@ class SDTurboScheduler:
|
||||||
return {"required":
|
return {"required":
|
||||||
{"model": ("MODEL",),
|
{"model": ("MODEL",),
|
||||||
"steps": ("INT", {"default": 1, "min": 1, "max": 10}),
|
"steps": ("INT", {"default": 1, "min": 1, "max": 10}),
|
||||||
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
RETURN_TYPES = ("SIGMAS",)
|
RETURN_TYPES = ("SIGMAS",)
|
||||||
|
@ -94,8 +95,9 @@ class SDTurboScheduler:
|
||||||
|
|
||||||
FUNCTION = "get_sigmas"
|
FUNCTION = "get_sigmas"
|
||||||
|
|
||||||
def get_sigmas(self, model, steps):
|
def get_sigmas(self, model, steps, denoise):
|
||||||
timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[:steps]
|
start_step = 10 - int(10 * denoise)
|
||||||
|
timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps]
|
||||||
sigmas = model.model.model_sampling.sigma(timesteps)
|
sigmas = model.model.model_sampling.sigma(timesteps)
|
||||||
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
|
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
|
||||||
return (sigmas, )
|
return (sigmas, )
|
||||||
|
|
Loading…
Reference in New Issue