Fix gligen lowvram mode.

This commit is contained in:
comfyanonymous 2024-02-18 02:20:23 -05:00
parent 8b60d33bb7
commit dccca1daa5
1 changed files with 27 additions and 25 deletions

View File

@ -2,7 +2,8 @@ import torch
from torch import nn
from .ldm.modules.attention import CrossAttention
from inspect import isfunction
import comfy.ops
ops = comfy.ops.manual_cast
def exists(val):
return val is not None
@ -22,7 +23,7 @@ def default(val, d):
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
self.proj = ops.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
@ -35,14 +36,14 @@ class FeedForward(nn.Module):
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = nn.Sequential(
nn.Linear(dim, inner_dim),
ops.Linear(dim, inner_dim),
nn.GELU()
) if not glu else GEGLU(dim, inner_dim)
self.net = nn.Sequential(
project_in,
nn.Dropout(dropout),
nn.Linear(inner_dim, dim_out)
ops.Linear(inner_dim, dim_out)
)
def forward(self, x):
@ -57,11 +58,12 @@ class GatedCrossAttentionDense(nn.Module):
query_dim=query_dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head)
dim_head=d_head,
operations=ops)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.norm1 = ops.LayerNorm(query_dim)
self.norm2 = ops.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
@ -87,17 +89,18 @@ class GatedSelfAttentionDense(nn.Module):
# we need a linear projection since we need cat visual feature and obj
# feature
self.linear = nn.Linear(context_dim, query_dim)
self.linear = ops.Linear(context_dim, query_dim)
self.attn = CrossAttention(
query_dim=query_dim,
context_dim=query_dim,
heads=n_heads,
dim_head=d_head)
dim_head=d_head,
operations=ops)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.norm1 = ops.LayerNorm(query_dim)
self.norm2 = ops.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
@ -126,14 +129,14 @@ class GatedSelfAttentionDense2(nn.Module):
# we need a linear projection since we need cat visual feature and obj
# feature
self.linear = nn.Linear(context_dim, query_dim)
self.linear = ops.Linear(context_dim, query_dim)
self.attn = CrossAttention(
query_dim=query_dim, context_dim=query_dim, dim_head=d_head)
query_dim=query_dim, context_dim=query_dim, dim_head=d_head, operations=ops)
self.ff = FeedForward(query_dim, glu=True)
self.norm1 = nn.LayerNorm(query_dim)
self.norm2 = nn.LayerNorm(query_dim)
self.norm1 = ops.LayerNorm(query_dim)
self.norm2 = ops.LayerNorm(query_dim)
self.register_parameter('alpha_attn', nn.Parameter(torch.tensor(0.)))
self.register_parameter('alpha_dense', nn.Parameter(torch.tensor(0.)))
@ -201,11 +204,11 @@ class PositionNet(nn.Module):
self.position_dim = fourier_freqs * 2 * 4 # 2 is sin&cos, 4 is xyxy
self.linears = nn.Sequential(
nn.Linear(self.in_dim + self.position_dim, 512),
ops.Linear(self.in_dim + self.position_dim, 512),
nn.SiLU(),
nn.Linear(512, 512),
ops.Linear(512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
ops.Linear(512, out_dim),
)
self.null_positive_feature = torch.nn.Parameter(
@ -215,16 +218,15 @@ class PositionNet(nn.Module):
def forward(self, boxes, masks, positive_embeddings):
B, N, _ = boxes.shape
dtype = self.linears[0].weight.dtype
masks = masks.unsqueeze(-1).to(dtype)
positive_embeddings = positive_embeddings.to(dtype)
masks = masks.unsqueeze(-1)
positive_embeddings = positive_embeddings
# embedding position (it may includes padding as placeholder)
xyxy_embedding = self.fourier_embedder(boxes.to(dtype)) # B*N*4 --> B*N*C
xyxy_embedding = self.fourier_embedder(boxes) # B*N*4 --> B*N*C
# learnable null embedding
positive_null = self.null_positive_feature.view(1, 1, -1)
xyxy_null = self.null_position_feature.view(1, 1, -1)
positive_null = self.null_positive_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
xyxy_null = self.null_position_feature.to(device=boxes.device, dtype=boxes.dtype).view(1, 1, -1)
# replace padding with learnable null embedding
positive_embeddings = positive_embeddings * \
@ -251,7 +253,7 @@ class Gligen(nn.Module):
def func(x, extra_options):
key = extra_options["transformer_index"]
module = self.module_list[key]
return module(x, objs)
return module(x, objs.to(device=x.device, dtype=x.dtype))
return func
def set_position(self, latent_image_shape, position_params, device):