Fix a bug where cached outputs affected IS_CHANGED (#4535)

This change fixes a bug where non-constant values could be passed to the
IS_CHANGED function. This would result in workflows taking an extra
execution before they acted as if they were cached.

The actual change is like 4 characters -- the rest is adding unit tests.
This commit is contained in:
guill 2024-08-21 20:38:46 -07:00 committed by GitHub
parent 5f84ea63e8
commit dafbe321d2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
4 changed files with 72 additions and 1 deletions

View File

@ -47,7 +47,8 @@ class IsChangedCache:
self.is_changed[node_id] = node["is_changed"] self.is_changed[node_id] = node["is_changed"]
return self.is_changed[node_id] return self.is_changed[node_id]
input_data_all, _ = get_input_data(node["inputs"], class_def, node_id, self.outputs_cache) # Intentionally do not use cached outputs here. We only want constants in IS_CHANGED
input_data_all, _ = get_input_data(node["inputs"], class_def, node_id, None)
try: try:
is_changed = _map_node_over_list(class_def, input_data_all, "IS_CHANGED") is_changed = _map_node_over_list(class_def, input_data_all, "IS_CHANGED")
node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed] node["is_changed"] = [None if isinstance(x, ExecutionBlocker) else x for x in is_changed]

View File

@ -459,3 +459,22 @@ class TestExecution:
assert len(images1) == 1, "Should have 1 image" assert len(images1) == 1, "Should have 1 image"
assert len(images2) == 1, "Should have 1 image" assert len(images2) == 1, "Should have 1 image"
# This tests that only constant outputs are used in the call to `IS_CHANGED`
def test_is_changed_with_outputs(self, client: ComfyClient, builder: GraphBuilder):
g = builder
input1 = g.node("StubConstantImage", value=0.5, height=512, width=512, batch_size=1)
test_node = g.node("TestIsChangedWithConstants", image=input1.out(0), value=0.5)
output = g.node("PreviewImage", images=test_node.out(0))
result = client.run(g)
images = result.get_images(output)
assert len(images) == 1, "Should have 1 image"
assert numpy.array(images[0]).min() == 63 and numpy.array(images[0]).max() == 63, "Image should have value 0.25"
result = client.run(g)
images = result.get_images(output)
assert len(images) == 1, "Should have 1 image"
assert numpy.array(images[0]).min() == 63 and numpy.array(images[0]).max() == 63, "Image should have value 0.25"
assert not result.did_run(test_node), "The execution should have been cached"

View File

@ -95,6 +95,31 @@ class TestCustomIsChanged:
else: else:
return False return False
class TestIsChangedWithConstants:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"image": ("IMAGE",),
"value": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "custom_is_changed"
CATEGORY = "Testing/Nodes"
def custom_is_changed(self, image, value):
return (image * value,)
@classmethod
def IS_CHANGED(cls, image, value):
if image is None:
return value
else:
return image.mean().item() * value
class TestCustomValidation1: class TestCustomValidation1:
@classmethod @classmethod
def INPUT_TYPES(cls): def INPUT_TYPES(cls):
@ -312,6 +337,7 @@ TEST_NODE_CLASS_MAPPINGS = {
"TestLazyMixImages": TestLazyMixImages, "TestLazyMixImages": TestLazyMixImages,
"TestVariadicAverage": TestVariadicAverage, "TestVariadicAverage": TestVariadicAverage,
"TestCustomIsChanged": TestCustomIsChanged, "TestCustomIsChanged": TestCustomIsChanged,
"TestIsChangedWithConstants": TestIsChangedWithConstants,
"TestCustomValidation1": TestCustomValidation1, "TestCustomValidation1": TestCustomValidation1,
"TestCustomValidation2": TestCustomValidation2, "TestCustomValidation2": TestCustomValidation2,
"TestCustomValidation3": TestCustomValidation3, "TestCustomValidation3": TestCustomValidation3,
@ -325,6 +351,7 @@ TEST_NODE_DISPLAY_NAME_MAPPINGS = {
"TestLazyMixImages": "Lazy Mix Images", "TestLazyMixImages": "Lazy Mix Images",
"TestVariadicAverage": "Variadic Average", "TestVariadicAverage": "Variadic Average",
"TestCustomIsChanged": "Custom IsChanged", "TestCustomIsChanged": "Custom IsChanged",
"TestIsChangedWithConstants": "IsChanged With Constants",
"TestCustomValidation1": "Custom Validation 1", "TestCustomValidation1": "Custom Validation 1",
"TestCustomValidation2": "Custom Validation 2", "TestCustomValidation2": "Custom Validation 2",
"TestCustomValidation3": "Custom Validation 3", "TestCustomValidation3": "Custom Validation 3",

View File

@ -28,6 +28,28 @@ class StubImage:
elif content == "NOISE": elif content == "NOISE":
return (torch.rand(batch_size, height, width, 3),) return (torch.rand(batch_size, height, width, 3),)
class StubConstantImage:
def __init__(self):
pass
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"value": ("FLOAT", {"default": 0.5, "min": 0.0, "max": 1.0, "step": 0.01}),
"height": ("INT", {"default": 512, "min": 1, "max": 1024 ** 3, "step": 1}),
"width": ("INT", {"default": 512, "min": 1, "max": 4096 ** 3, "step": 1}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 1024 ** 3, "step": 1}),
},
}
RETURN_TYPES = ("IMAGE",)
FUNCTION = "stub_constant_image"
CATEGORY = "Testing/Stub Nodes"
def stub_constant_image(self, value, height, width, batch_size):
return (torch.ones(batch_size, height, width, 3) * value,)
class StubMask: class StubMask:
def __init__(self): def __init__(self):
pass pass
@ -93,12 +115,14 @@ class StubFloat:
TEST_STUB_NODE_CLASS_MAPPINGS = { TEST_STUB_NODE_CLASS_MAPPINGS = {
"StubImage": StubImage, "StubImage": StubImage,
"StubConstantImage": StubConstantImage,
"StubMask": StubMask, "StubMask": StubMask,
"StubInt": StubInt, "StubInt": StubInt,
"StubFloat": StubFloat, "StubFloat": StubFloat,
} }
TEST_STUB_NODE_DISPLAY_NAME_MAPPINGS = { TEST_STUB_NODE_DISPLAY_NAME_MAPPINGS = {
"StubImage": "Stub Image", "StubImage": "Stub Image",
"StubConstantImage": "Stub Constant Image",
"StubMask": "Stub Mask", "StubMask": "Stub Mask",
"StubInt": "Stub Int", "StubInt": "Stub Int",
"StubFloat": "Stub Float", "StubFloat": "Stub Float",