Add experimental photomaker nodes.
Put the model file in models/photomaker and use PhotoMakerLoader. Then use PhotoMakerEncode with the keyword "photomaker" to apply the image
This commit is contained in:
parent
b9911dcb2f
commit
d1533d9c0f
|
@ -0,0 +1,187 @@
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import folder_paths
|
||||||
|
import comfy.clip_model
|
||||||
|
import comfy.clip_vision
|
||||||
|
import comfy.ops
|
||||||
|
|
||||||
|
# code for model from: https://github.com/TencentARC/PhotoMaker/blob/main/photomaker/model.py under Apache License Version 2.0
|
||||||
|
VISION_CONFIG_DICT = {
|
||||||
|
"hidden_size": 1024,
|
||||||
|
"image_size": 224,
|
||||||
|
"intermediate_size": 4096,
|
||||||
|
"num_attention_heads": 16,
|
||||||
|
"num_channels": 3,
|
||||||
|
"num_hidden_layers": 24,
|
||||||
|
"patch_size": 14,
|
||||||
|
"projection_dim": 768,
|
||||||
|
"hidden_act": "quick_gelu",
|
||||||
|
}
|
||||||
|
|
||||||
|
class MLP(nn.Module):
|
||||||
|
def __init__(self, in_dim, out_dim, hidden_dim, use_residual=True, operations=comfy.ops):
|
||||||
|
super().__init__()
|
||||||
|
if use_residual:
|
||||||
|
assert in_dim == out_dim
|
||||||
|
self.layernorm = operations.LayerNorm(in_dim)
|
||||||
|
self.fc1 = operations.Linear(in_dim, hidden_dim)
|
||||||
|
self.fc2 = operations.Linear(hidden_dim, out_dim)
|
||||||
|
self.use_residual = use_residual
|
||||||
|
self.act_fn = nn.GELU()
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
residual = x
|
||||||
|
x = self.layernorm(x)
|
||||||
|
x = self.fc1(x)
|
||||||
|
x = self.act_fn(x)
|
||||||
|
x = self.fc2(x)
|
||||||
|
if self.use_residual:
|
||||||
|
x = x + residual
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class FuseModule(nn.Module):
|
||||||
|
def __init__(self, embed_dim, operations):
|
||||||
|
super().__init__()
|
||||||
|
self.mlp1 = MLP(embed_dim * 2, embed_dim, embed_dim, use_residual=False, operations=operations)
|
||||||
|
self.mlp2 = MLP(embed_dim, embed_dim, embed_dim, use_residual=True, operations=operations)
|
||||||
|
self.layer_norm = operations.LayerNorm(embed_dim)
|
||||||
|
|
||||||
|
def fuse_fn(self, prompt_embeds, id_embeds):
|
||||||
|
stacked_id_embeds = torch.cat([prompt_embeds, id_embeds], dim=-1)
|
||||||
|
stacked_id_embeds = self.mlp1(stacked_id_embeds) + prompt_embeds
|
||||||
|
stacked_id_embeds = self.mlp2(stacked_id_embeds)
|
||||||
|
stacked_id_embeds = self.layer_norm(stacked_id_embeds)
|
||||||
|
return stacked_id_embeds
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
prompt_embeds,
|
||||||
|
id_embeds,
|
||||||
|
class_tokens_mask,
|
||||||
|
) -> torch.Tensor:
|
||||||
|
# id_embeds shape: [b, max_num_inputs, 1, 2048]
|
||||||
|
id_embeds = id_embeds.to(prompt_embeds.dtype)
|
||||||
|
num_inputs = class_tokens_mask.sum().unsqueeze(0) # TODO: check for training case
|
||||||
|
batch_size, max_num_inputs = id_embeds.shape[:2]
|
||||||
|
# seq_length: 77
|
||||||
|
seq_length = prompt_embeds.shape[1]
|
||||||
|
# flat_id_embeds shape: [b*max_num_inputs, 1, 2048]
|
||||||
|
flat_id_embeds = id_embeds.view(
|
||||||
|
-1, id_embeds.shape[-2], id_embeds.shape[-1]
|
||||||
|
)
|
||||||
|
# valid_id_mask [b*max_num_inputs]
|
||||||
|
valid_id_mask = (
|
||||||
|
torch.arange(max_num_inputs, device=flat_id_embeds.device)[None, :]
|
||||||
|
< num_inputs[:, None]
|
||||||
|
)
|
||||||
|
valid_id_embeds = flat_id_embeds[valid_id_mask.flatten()]
|
||||||
|
|
||||||
|
prompt_embeds = prompt_embeds.view(-1, prompt_embeds.shape[-1])
|
||||||
|
class_tokens_mask = class_tokens_mask.view(-1)
|
||||||
|
valid_id_embeds = valid_id_embeds.view(-1, valid_id_embeds.shape[-1])
|
||||||
|
# slice out the image token embeddings
|
||||||
|
image_token_embeds = prompt_embeds[class_tokens_mask]
|
||||||
|
stacked_id_embeds = self.fuse_fn(image_token_embeds, valid_id_embeds)
|
||||||
|
assert class_tokens_mask.sum() == stacked_id_embeds.shape[0], f"{class_tokens_mask.sum()} != {stacked_id_embeds.shape[0]}"
|
||||||
|
prompt_embeds.masked_scatter_(class_tokens_mask[:, None], stacked_id_embeds.to(prompt_embeds.dtype))
|
||||||
|
updated_prompt_embeds = prompt_embeds.view(batch_size, seq_length, -1)
|
||||||
|
return updated_prompt_embeds
|
||||||
|
|
||||||
|
class PhotoMakerIDEncoder(comfy.clip_model.CLIPVisionModelProjection):
|
||||||
|
def __init__(self):
|
||||||
|
self.load_device = comfy.model_management.text_encoder_device()
|
||||||
|
offload_device = comfy.model_management.text_encoder_offload_device()
|
||||||
|
dtype = comfy.model_management.text_encoder_dtype(self.load_device)
|
||||||
|
|
||||||
|
super().__init__(VISION_CONFIG_DICT, dtype, offload_device, comfy.ops.manual_cast)
|
||||||
|
self.visual_projection_2 = comfy.ops.manual_cast.Linear(1024, 1280, bias=False)
|
||||||
|
self.fuse_module = FuseModule(2048, comfy.ops.manual_cast)
|
||||||
|
|
||||||
|
def forward(self, id_pixel_values, prompt_embeds, class_tokens_mask):
|
||||||
|
b, num_inputs, c, h, w = id_pixel_values.shape
|
||||||
|
id_pixel_values = id_pixel_values.view(b * num_inputs, c, h, w)
|
||||||
|
|
||||||
|
shared_id_embeds = self.vision_model(id_pixel_values)[2]
|
||||||
|
id_embeds = self.visual_projection(shared_id_embeds)
|
||||||
|
id_embeds_2 = self.visual_projection_2(shared_id_embeds)
|
||||||
|
|
||||||
|
id_embeds = id_embeds.view(b, num_inputs, 1, -1)
|
||||||
|
id_embeds_2 = id_embeds_2.view(b, num_inputs, 1, -1)
|
||||||
|
|
||||||
|
id_embeds = torch.cat((id_embeds, id_embeds_2), dim=-1)
|
||||||
|
updated_prompt_embeds = self.fuse_module(prompt_embeds, id_embeds, class_tokens_mask)
|
||||||
|
|
||||||
|
return updated_prompt_embeds
|
||||||
|
|
||||||
|
|
||||||
|
class PhotoMakerLoader:
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(s):
|
||||||
|
return {"required": { "photomaker_model_name": (folder_paths.get_filename_list("photomaker"), )}}
|
||||||
|
|
||||||
|
RETURN_TYPES = ("PHOTOMAKER",)
|
||||||
|
FUNCTION = "load_photomaker_model"
|
||||||
|
|
||||||
|
CATEGORY = "_for_testing/photomaker"
|
||||||
|
|
||||||
|
def load_photomaker_model(self, photomaker_model_name):
|
||||||
|
photomaker_model_path = folder_paths.get_full_path("photomaker", photomaker_model_name)
|
||||||
|
photomaker_model = PhotoMakerIDEncoder()
|
||||||
|
data = comfy.utils.load_torch_file(photomaker_model_path, safe_load=True)
|
||||||
|
if "id_encoder" in data:
|
||||||
|
data = data["id_encoder"]
|
||||||
|
photomaker_model.load_state_dict(data)
|
||||||
|
return (photomaker_model,)
|
||||||
|
|
||||||
|
|
||||||
|
class PhotoMakerEncode:
|
||||||
|
@classmethod
|
||||||
|
def INPUT_TYPES(s):
|
||||||
|
return {"required": { "photomaker": ("PHOTOMAKER",),
|
||||||
|
"image": ("IMAGE",),
|
||||||
|
"clip": ("CLIP", ),
|
||||||
|
"text": ("STRING", {"multiline": True, "default": "photograph of photomaker"}),
|
||||||
|
}}
|
||||||
|
|
||||||
|
RETURN_TYPES = ("CONDITIONING",)
|
||||||
|
FUNCTION = "apply_photomaker"
|
||||||
|
|
||||||
|
CATEGORY = "_for_testing/photomaker"
|
||||||
|
|
||||||
|
def apply_photomaker(self, photomaker, image, clip, text):
|
||||||
|
special_token = "photomaker"
|
||||||
|
pixel_values = comfy.clip_vision.clip_preprocess(image.to(photomaker.load_device)).float()
|
||||||
|
try:
|
||||||
|
index = text.split(" ").index(special_token) + 1
|
||||||
|
except ValueError:
|
||||||
|
index = -1
|
||||||
|
tokens = clip.tokenize(text, return_word_ids=True)
|
||||||
|
out_tokens = {}
|
||||||
|
for k in tokens:
|
||||||
|
out_tokens[k] = []
|
||||||
|
for t in tokens[k]:
|
||||||
|
f = list(filter(lambda x: x[2] != index, t))
|
||||||
|
while len(f) < len(t):
|
||||||
|
f.append(t[-1])
|
||||||
|
out_tokens[k].append(f)
|
||||||
|
|
||||||
|
cond, pooled = clip.encode_from_tokens(out_tokens, return_pooled=True)
|
||||||
|
|
||||||
|
if index > 0:
|
||||||
|
token_index = index - 1
|
||||||
|
num_id_images = 1
|
||||||
|
class_tokens_mask = [True if token_index <= i < token_index+num_id_images else False for i in range(77)]
|
||||||
|
out = photomaker(id_pixel_values=pixel_values.unsqueeze(0), prompt_embeds=cond.to(photomaker.load_device),
|
||||||
|
class_tokens_mask=torch.tensor(class_tokens_mask, dtype=torch.bool, device=photomaker.load_device).unsqueeze(0))
|
||||||
|
else:
|
||||||
|
out = cond
|
||||||
|
|
||||||
|
return ([[out, {"pooled_output": pooled}]], )
|
||||||
|
|
||||||
|
|
||||||
|
NODE_CLASS_MAPPINGS = {
|
||||||
|
"PhotoMakerLoader": PhotoMakerLoader,
|
||||||
|
"PhotoMakerEncode": PhotoMakerEncode,
|
||||||
|
}
|
||||||
|
|
|
@ -29,6 +29,8 @@ folder_names_and_paths["custom_nodes"] = ([os.path.join(base_path, "custom_nodes
|
||||||
|
|
||||||
folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions)
|
folder_names_and_paths["hypernetworks"] = ([os.path.join(models_dir, "hypernetworks")], supported_pt_extensions)
|
||||||
|
|
||||||
|
folder_names_and_paths["photomaker"] = ([os.path.join(models_dir, "photomaker")], supported_pt_extensions)
|
||||||
|
|
||||||
folder_names_and_paths["classifiers"] = ([os.path.join(models_dir, "classifiers")], {""})
|
folder_names_and_paths["classifiers"] = ([os.path.join(models_dir, "classifiers")], {""})
|
||||||
|
|
||||||
output_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
|
output_directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "output")
|
||||||
|
|
Loading…
Reference in New Issue