Lower latency by batching some text encoder inputs.

This commit is contained in:
comfyanonymous 2023-07-01 15:07:39 -04:00
parent 3b6fe51c1d
commit ce35d8c659
1 changed files with 18 additions and 10 deletions

View File

@ -10,21 +10,29 @@ import contextlib
class ClipTokenWeightEncoder:
def encode_token_weights(self, token_weight_pairs):
z_empty, _ = self.encode(self.empty_tokens)
output = []
first_pooled = None
to_encode = list(self.empty_tokens)
for x in token_weight_pairs:
tokens = [list(map(lambda a: a[0], x))]
z, pooled = self.encode(tokens)
if first_pooled is None:
first_pooled = pooled
tokens = list(map(lambda a: a[0], x))
to_encode.append(tokens)
out, pooled = self.encode(to_encode)
z_empty = out[0:1]
if pooled.shape[0] > 1:
first_pooled = pooled[1:2]
else:
first_pooled = pooled[0:1]
output = []
for i in range(1, out.shape[0]):
z = out[i:i+1]
for i in range(len(z)):
for j in range(len(z[i])):
weight = x[j][1]
weight = token_weight_pairs[i - 1][j][1]
z[i][j] = (z[i][j] - z_empty[0][j]) * weight + z_empty[0][j]
output += [z]
output.append(z)
if (len(output) == 0):
return self.encode(self.empty_tokens)
return z_empty, first_pooled
return torch.cat(output, dim=-2).cpu(), first_pooled.cpu()
class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):