Make zero denoise a NOP.
This commit is contained in:
parent
fcfd2bdf8a
commit
c6bd456c45
|
@ -624,6 +624,9 @@ class CFGGuider:
|
|||
return self.inner_model.process_latent_out(samples.to(torch.float32))
|
||||
|
||||
def sample(self, noise, latent_image, sampler, sigmas, denoise_mask=None, callback=None, disable_pbar=False, seed=None):
|
||||
if sigmas.shape[-1] == 0:
|
||||
return latent_image
|
||||
|
||||
self.conds = {}
|
||||
for k in self.original_conds:
|
||||
self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))
|
||||
|
@ -722,9 +725,12 @@ class KSampler:
|
|||
if denoise is None or denoise > 0.9999:
|
||||
self.sigmas = self.calculate_sigmas(steps).to(self.device)
|
||||
else:
|
||||
new_steps = int(steps/denoise)
|
||||
sigmas = self.calculate_sigmas(new_steps).to(self.device)
|
||||
self.sigmas = sigmas[-(steps + 1):]
|
||||
if denoise <= 0.0:
|
||||
self.sigmas = torch.FloatTensor([])
|
||||
else:
|
||||
new_steps = int(steps/denoise)
|
||||
sigmas = self.calculate_sigmas(new_steps).to(self.device)
|
||||
self.sigmas = sigmas[-(steps + 1):]
|
||||
|
||||
def sample(self, noise, positive, negative, cfg, latent_image=None, start_step=None, last_step=None, force_full_denoise=False, denoise_mask=None, sigmas=None, callback=None, disable_pbar=False, seed=None):
|
||||
if sigmas is None:
|
||||
|
|
|
@ -24,6 +24,8 @@ class BasicScheduler:
|
|||
def get_sigmas(self, model, scheduler, steps, denoise):
|
||||
total_steps = steps
|
||||
if denoise < 1.0:
|
||||
if denoise <= 0.0:
|
||||
return (torch.FloatTensor([]),)
|
||||
total_steps = int(steps/denoise)
|
||||
|
||||
comfy.model_management.load_models_gpu([model])
|
||||
|
@ -160,6 +162,9 @@ class FlipSigmas:
|
|||
FUNCTION = "get_sigmas"
|
||||
|
||||
def get_sigmas(self, sigmas):
|
||||
if len(sigmas) == 0:
|
||||
return (sigmas,)
|
||||
|
||||
sigmas = sigmas.flip(0)
|
||||
if sigmas[0] == 0:
|
||||
sigmas[0] = 0.0001
|
||||
|
|
Loading…
Reference in New Issue