Make scaled_dot_product switch to sliced attention on OOM.
This commit is contained in:
parent
797c4e8d3b
commit
b8636a44aa
|
@ -146,6 +146,41 @@ class ResnetBlock(nn.Module):
|
|||
|
||||
return x+h
|
||||
|
||||
def slice_attention(q, k, v):
|
||||
r1 = torch.zeros_like(k, device=q.device)
|
||||
scale = (int(q.shape[-1])**(-0.5))
|
||||
|
||||
mem_free_total = model_management.get_free_memory(q.device)
|
||||
|
||||
gb = 1024 ** 3
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
|
||||
modifier = 3 if q.element_size() == 2 else 2.5
|
||||
mem_required = tensor_size * modifier
|
||||
steps = 1
|
||||
|
||||
if mem_required > mem_free_total:
|
||||
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
||||
|
||||
while True:
|
||||
try:
|
||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
s1 = torch.bmm(q[:, i:end], k) * scale
|
||||
|
||||
s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
|
||||
del s1
|
||||
|
||||
r1[:, :, i:end] = torch.bmm(v, s2)
|
||||
del s2
|
||||
break
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
steps *= 2
|
||||
if steps > 128:
|
||||
raise e
|
||||
print("out of memory error, increasing steps and trying again", steps)
|
||||
|
||||
return r1
|
||||
|
||||
class AttnBlock(nn.Module):
|
||||
def __init__(self, in_channels):
|
||||
|
@ -183,48 +218,15 @@ class AttnBlock(nn.Module):
|
|||
|
||||
# compute attention
|
||||
b,c,h,w = q.shape
|
||||
scale = (int(c)**(-0.5))
|
||||
|
||||
q = q.reshape(b,c,h*w)
|
||||
q = q.permute(0,2,1) # b,hw,c
|
||||
k = k.reshape(b,c,h*w) # b,c,hw
|
||||
v = v.reshape(b,c,h*w)
|
||||
|
||||
r1 = torch.zeros_like(k, device=q.device)
|
||||
|
||||
mem_free_total = model_management.get_free_memory(q.device)
|
||||
|
||||
gb = 1024 ** 3
|
||||
tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size()
|
||||
modifier = 3 if q.element_size() == 2 else 2.5
|
||||
mem_required = tensor_size * modifier
|
||||
steps = 1
|
||||
|
||||
if mem_required > mem_free_total:
|
||||
steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2)))
|
||||
|
||||
while True:
|
||||
try:
|
||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
s1 = torch.bmm(q[:, i:end], k) * scale
|
||||
|
||||
s2 = torch.nn.functional.softmax(s1, dim=2).permute(0,2,1)
|
||||
del s1
|
||||
|
||||
r1[:, :, i:end] = torch.bmm(v, s2)
|
||||
del s2
|
||||
break
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
steps *= 2
|
||||
if steps > 128:
|
||||
raise e
|
||||
print("out of memory error, increasing steps and trying again", steps)
|
||||
|
||||
r1 = slice_attention(q, k, v)
|
||||
h_ = r1.reshape(b,c,h,w)
|
||||
del r1
|
||||
|
||||
h_ = self.proj_out(h_)
|
||||
|
||||
return x+h_
|
||||
|
@ -335,9 +337,14 @@ class MemoryEfficientAttnBlockPytorch(nn.Module):
|
|||
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
|
||||
(q, k, v),
|
||||
)
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
||||
|
||||
try:
|
||||
out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0.0, is_causal=False)
|
||||
out = out.transpose(2, 3).reshape(B, C, H, W)
|
||||
except model_management.OOM_EXCEPTION as e:
|
||||
print("scaled_dot_product_attention OOMed: switched to slice attention")
|
||||
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(B, C, H, W)
|
||||
|
||||
out = self.proj_out(out)
|
||||
return x+out
|
||||
|
||||
|
|
Loading…
Reference in New Issue