Try to keep text encoders loaded and patched to increase speed.
load_model_gpu() is now used with the text encoder models instead of just the unet.
This commit is contained in:
parent
97ee230682
commit
b6a60fa696
|
@ -3,7 +3,7 @@ import os
|
|||
import yaml
|
||||
|
||||
import folder_paths
|
||||
from comfy.sd import ModelPatcher, load_model_weights, CLIP, VAE, load_checkpoint
|
||||
from comfy.sd import load_checkpoint
|
||||
import os.path as osp
|
||||
import re
|
||||
import torch
|
||||
|
|
|
@ -216,11 +216,6 @@ current_gpu_controlnets = []
|
|||
|
||||
model_accelerated = False
|
||||
|
||||
def unet_offload_device():
|
||||
if vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.SHARED:
|
||||
return get_torch_device()
|
||||
else:
|
||||
return torch.device("cpu")
|
||||
|
||||
def unload_model():
|
||||
global current_loaded_model
|
||||
|
@ -234,8 +229,8 @@ def unload_model():
|
|||
model_accelerated = False
|
||||
|
||||
|
||||
current_loaded_model.model.to(unet_offload_device())
|
||||
current_loaded_model.model_patches_to(unet_offload_device())
|
||||
current_loaded_model.model.to(current_loaded_model.offload_device)
|
||||
current_loaded_model.model_patches_to(current_loaded_model.offload_device)
|
||||
current_loaded_model.unpatch_model()
|
||||
current_loaded_model = None
|
||||
|
||||
|
@ -260,10 +255,14 @@ def load_model_gpu(model):
|
|||
model.unpatch_model()
|
||||
raise e
|
||||
|
||||
torch_dev = get_torch_device()
|
||||
torch_dev = model.load_device
|
||||
model.model_patches_to(torch_dev)
|
||||
|
||||
if is_device_cpu(torch_dev):
|
||||
vram_set_state = VRAMState.DISABLED
|
||||
else:
|
||||
vram_set_state = vram_state
|
||||
|
||||
if lowvram_available and (vram_set_state == VRAMState.LOW_VRAM or vram_set_state == VRAMState.NORMAL_VRAM):
|
||||
model_size = model.model_size()
|
||||
current_free_mem = get_free_memory(torch_dev)
|
||||
|
@ -277,14 +276,14 @@ def load_model_gpu(model):
|
|||
pass
|
||||
elif vram_set_state == VRAMState.NORMAL_VRAM or vram_set_state == VRAMState.HIGH_VRAM or vram_set_state == VRAMState.SHARED:
|
||||
model_accelerated = False
|
||||
real_model.to(get_torch_device())
|
||||
real_model.to(torch_dev)
|
||||
else:
|
||||
if vram_set_state == VRAMState.NO_VRAM:
|
||||
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "256MiB", "cpu": "16GiB"})
|
||||
elif vram_set_state == VRAMState.LOW_VRAM:
|
||||
device_map = accelerate.infer_auto_device_map(real_model, max_memory={0: "{}MiB".format(lowvram_model_memory // (1024 * 1024)), "cpu": "16GiB"})
|
||||
|
||||
accelerate.dispatch_model(real_model, device_map=device_map, main_device=get_torch_device())
|
||||
accelerate.dispatch_model(real_model, device_map=device_map, main_device=torch_dev)
|
||||
model_accelerated = True
|
||||
return current_loaded_model
|
||||
|
||||
|
@ -327,6 +326,12 @@ def unload_if_low_vram(model):
|
|||
return model.cpu()
|
||||
return model
|
||||
|
||||
def unet_offload_device():
|
||||
if vram_state == VRAMState.HIGH_VRAM or vram_state == VRAMState.SHARED:
|
||||
return get_torch_device()
|
||||
else:
|
||||
return torch.device("cpu")
|
||||
|
||||
def text_encoder_offload_device():
|
||||
if args.gpu_only:
|
||||
return get_torch_device()
|
||||
|
@ -428,13 +433,18 @@ def mps_mode():
|
|||
global cpu_state
|
||||
return cpu_state == CPUState.MPS
|
||||
|
||||
def is_device_cpu(device):
|
||||
if hasattr(device, 'type'):
|
||||
if (device.type == 'cpu' or device.type == 'mps'):
|
||||
return True
|
||||
return False
|
||||
|
||||
def should_use_fp16(device=None):
|
||||
global xpu_available
|
||||
global directml_enabled
|
||||
|
||||
if device is not None: #TODO
|
||||
if hasattr(device, 'type'):
|
||||
if (device.type == 'cpu' or device.type == 'mps'):
|
||||
if is_device_cpu(device):
|
||||
return False
|
||||
|
||||
if FORCE_FP32:
|
||||
|
|
46
comfy/sd.py
46
comfy/sd.py
|
@ -308,13 +308,15 @@ def model_lora_keys(model, key_map={}):
|
|||
|
||||
|
||||
class ModelPatcher:
|
||||
def __init__(self, model, size=0):
|
||||
def __init__(self, model, load_device, offload_device, size=0):
|
||||
self.size = size
|
||||
self.model = model
|
||||
self.patches = []
|
||||
self.backup = {}
|
||||
self.model_options = {"transformer_options":{}}
|
||||
self.model_size()
|
||||
self.load_device = load_device
|
||||
self.offload_device = offload_device
|
||||
|
||||
def model_size(self):
|
||||
if self.size > 0:
|
||||
|
@ -329,7 +331,7 @@ class ModelPatcher:
|
|||
return size
|
||||
|
||||
def clone(self):
|
||||
n = ModelPatcher(self.model, self.size)
|
||||
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size)
|
||||
n.patches = self.patches[:]
|
||||
n.model_options = copy.deepcopy(self.model_options)
|
||||
n.model_keys = self.model_keys
|
||||
|
@ -341,6 +343,9 @@ class ModelPatcher:
|
|||
else:
|
||||
self.model_options["sampler_cfg_function"] = sampler_cfg_function
|
||||
|
||||
def set_model_unet_function_wrapper(self, unet_wrapper_function):
|
||||
self.model_options["model_function_wrapper"] = unet_wrapper_function
|
||||
|
||||
def set_model_patch(self, patch, name):
|
||||
to = self.model_options["transformer_options"]
|
||||
if "patches" not in to:
|
||||
|
@ -525,14 +530,16 @@ class CLIP:
|
|||
clip = target.clip
|
||||
tokenizer = target.tokenizer
|
||||
|
||||
self.device = model_management.text_encoder_device()
|
||||
load_device = model_management.text_encoder_device()
|
||||
offload_device = model_management.text_encoder_offload_device()
|
||||
self.cond_stage_model = clip(**(params))
|
||||
if model_management.should_use_fp16(self.device):
|
||||
if model_management.should_use_fp16(load_device):
|
||||
self.cond_stage_model.half()
|
||||
self.cond_stage_model = self.cond_stage_model.to(model_management.text_encoder_offload_device())
|
||||
|
||||
self.cond_stage_model = self.cond_stage_model.to()
|
||||
|
||||
self.tokenizer = tokenizer(embedding_directory=embedding_directory)
|
||||
self.patcher = ModelPatcher(self.cond_stage_model)
|
||||
self.patcher = ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
|
||||
self.layer_idx = None
|
||||
|
||||
def clone(self):
|
||||
|
@ -541,7 +548,6 @@ class CLIP:
|
|||
n.cond_stage_model = self.cond_stage_model
|
||||
n.tokenizer = self.tokenizer
|
||||
n.layer_idx = self.layer_idx
|
||||
n.device = self.device
|
||||
return n
|
||||
|
||||
def load_from_state_dict(self, sd):
|
||||
|
@ -559,21 +565,12 @@ class CLIP:
|
|||
def encode_from_tokens(self, tokens, return_pooled=False):
|
||||
if self.layer_idx is not None:
|
||||
self.cond_stage_model.clip_layer(self.layer_idx)
|
||||
try:
|
||||
self.cond_stage_model.to(self.device)
|
||||
self.patch_model()
|
||||
cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
|
||||
self.unpatch_model()
|
||||
self.cond_stage_model.to(model_management.text_encoder_offload_device())
|
||||
except Exception as e:
|
||||
self.unpatch_model()
|
||||
self.cond_stage_model.to(model_management.text_encoder_offload_device())
|
||||
raise e
|
||||
|
||||
cond_out = cond
|
||||
model_management.load_model_gpu(self.patcher)
|
||||
cond, pooled = self.cond_stage_model.encode_token_weights(tokens)
|
||||
if return_pooled:
|
||||
return cond_out, pooled
|
||||
return cond_out
|
||||
return cond, pooled
|
||||
return cond
|
||||
|
||||
def encode(self, text):
|
||||
tokens = self.tokenize(text)
|
||||
|
@ -1097,6 +1094,8 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
|||
if fp16:
|
||||
model = model.half()
|
||||
|
||||
offload_device = model_management.unet_offload_device()
|
||||
model = model.to(offload_device)
|
||||
model.load_model_weights(state_dict, "model.diffusion_model.")
|
||||
|
||||
if output_vae:
|
||||
|
@ -1119,7 +1118,7 @@ def load_checkpoint(config_path=None, ckpt_path=None, output_vae=True, output_cl
|
|||
w.cond_stage_model = clip.cond_stage_model
|
||||
load_clip_weights(w, state_dict)
|
||||
|
||||
return (ModelPatcher(model), clip, vae)
|
||||
return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae)
|
||||
|
||||
|
||||
def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=False, embedding_directory=None):
|
||||
|
@ -1144,8 +1143,9 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
|||
if output_clipvision:
|
||||
clipvision = clip_vision.load_clipvision_from_sd(sd, model_config.clip_vision_prefix, True)
|
||||
|
||||
offload_device = model_management.unet_offload_device()
|
||||
model = model_config.get_model(sd)
|
||||
model = model.to(model_management.unet_offload_device())
|
||||
model = model.to(offload_device)
|
||||
model.load_model_weights(sd, "model.diffusion_model.")
|
||||
|
||||
if output_vae:
|
||||
|
@ -1166,7 +1166,7 @@ def load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, o
|
|||
if len(left_over) > 0:
|
||||
print("left over keys:", left_over)
|
||||
|
||||
return (ModelPatcher(model), clip, vae, clipvision)
|
||||
return (ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=offload_device), clip, vae, clipvision)
|
||||
|
||||
def save_checkpoint(output_path, model, clip, vae, metadata=None):
|
||||
try:
|
||||
|
|
|
@ -112,11 +112,9 @@ class SD1ClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
|||
tokens = torch.LongTensor(tokens).to(device)
|
||||
|
||||
if backup_embeds.weight.dtype != torch.float32:
|
||||
print("autocast clip")
|
||||
precision_scope = torch.autocast
|
||||
else:
|
||||
precision_scope = contextlib.nullcontext
|
||||
print("no autocast clip")
|
||||
|
||||
with precision_scope(model_management.get_autocast_device(device)):
|
||||
outputs = self.transformer(input_ids=tokens, output_hidden_states=self.layer=="hidden")
|
||||
|
|
Loading…
Reference in New Issue