Fix merging not working when model2 of model merge node was a merge.
This commit is contained in:
parent
febea8c101
commit
a9a4ba7574
189
comfy/sd.py
189
comfy/sd.py
|
@ -206,7 +206,7 @@ class ModelPatcher:
|
|||
def __init__(self, model, load_device, offload_device, size=0):
|
||||
self.size = size
|
||||
self.model = model
|
||||
self.patches = []
|
||||
self.patches = {}
|
||||
self.backup = {}
|
||||
self.model_options = {"transformer_options":{}}
|
||||
self.model_size()
|
||||
|
@ -227,7 +227,10 @@ class ModelPatcher:
|
|||
|
||||
def clone(self):
|
||||
n = ModelPatcher(self.model, self.load_device, self.offload_device, self.size)
|
||||
n.patches = self.patches[:]
|
||||
n.patches = {}
|
||||
for k in self.patches:
|
||||
n.patches[k] = self.patches[k][:]
|
||||
|
||||
n.model_options = copy.deepcopy(self.model_options)
|
||||
n.model_keys = self.model_keys
|
||||
return n
|
||||
|
@ -295,12 +298,28 @@ class ModelPatcher:
|
|||
return self.model.get_dtype()
|
||||
|
||||
def add_patches(self, patches, strength_patch=1.0, strength_model=1.0):
|
||||
p = {}
|
||||
p = set()
|
||||
for k in patches:
|
||||
if k in self.model_keys:
|
||||
p[k] = patches[k]
|
||||
self.patches += [(strength_patch, p, strength_model)]
|
||||
return p.keys()
|
||||
p.add(k)
|
||||
current_patches = self.patches.get(k, [])
|
||||
current_patches.append((strength_patch, patches[k], strength_model))
|
||||
self.patches[k] = current_patches
|
||||
|
||||
return list(p)
|
||||
|
||||
def get_key_patches(self, filter_prefix=None):
|
||||
model_sd = self.model_state_dict()
|
||||
p = {}
|
||||
for k in model_sd:
|
||||
if filter_prefix is not None:
|
||||
if not k.startswith(filter_prefix):
|
||||
continue
|
||||
if k in self.patches:
|
||||
p[k] = [model_sd[k]] + self.patches[k]
|
||||
else:
|
||||
p[k] = (model_sd[k],)
|
||||
return p
|
||||
|
||||
def model_state_dict(self, filter_prefix=None):
|
||||
sd = self.model.state_dict()
|
||||
|
@ -313,85 +332,93 @@ class ModelPatcher:
|
|||
|
||||
def patch_model(self):
|
||||
model_sd = self.model_state_dict()
|
||||
for p in self.patches:
|
||||
for k in p[1]:
|
||||
v = p[1][k]
|
||||
key = k
|
||||
if key not in model_sd:
|
||||
print("could not patch. key doesn't exist in model:", k)
|
||||
continue
|
||||
for key in self.patches:
|
||||
if key not in model_sd:
|
||||
print("could not patch. key doesn't exist in model:", k)
|
||||
continue
|
||||
|
||||
weight = model_sd[key]
|
||||
if key not in self.backup:
|
||||
self.backup[key] = weight.clone()
|
||||
weight = model_sd[key]
|
||||
|
||||
alpha = p[0]
|
||||
strength_model = p[2]
|
||||
if key not in self.backup:
|
||||
self.backup[key] = weight.clone()
|
||||
|
||||
if strength_model != 1.0:
|
||||
weight *= strength_model
|
||||
|
||||
if len(v) == 1:
|
||||
w1 = v[0]
|
||||
if w1.shape != weight.shape:
|
||||
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
|
||||
else:
|
||||
weight += alpha * w1.type(weight.dtype).to(weight.device)
|
||||
elif len(v) == 4: #lora/locon
|
||||
mat1 = v[0]
|
||||
mat2 = v[1]
|
||||
if v[2] is not None:
|
||||
alpha *= v[2] / mat2.shape[0]
|
||||
if v[3] is not None:
|
||||
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
||||
final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
|
||||
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
|
||||
weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
||||
elif len(v) == 8: #lokr
|
||||
w1 = v[0]
|
||||
w2 = v[1]
|
||||
w1_a = v[3]
|
||||
w1_b = v[4]
|
||||
w2_a = v[5]
|
||||
w2_b = v[6]
|
||||
t2 = v[7]
|
||||
dim = None
|
||||
|
||||
if w1 is None:
|
||||
dim = w1_b.shape[0]
|
||||
w1 = torch.mm(w1_a.float(), w1_b.float())
|
||||
|
||||
if w2 is None:
|
||||
dim = w2_b.shape[0]
|
||||
if t2 is None:
|
||||
w2 = torch.mm(w2_a.float(), w2_b.float())
|
||||
else:
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
if v[2] is not None and dim is not None:
|
||||
alpha *= v[2] / dim
|
||||
|
||||
weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
||||
else: #loha
|
||||
w1a = v[0]
|
||||
w1b = v[1]
|
||||
if v[2] is not None:
|
||||
alpha *= v[2] / w1b.shape[0]
|
||||
w2a = v[3]
|
||||
w2b = v[4]
|
||||
if v[5] is not None: #cp decomposition
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
|
||||
else:
|
||||
m1 = torch.mm(w1a.float(), w1b.float())
|
||||
m2 = torch.mm(w2a.float(), w2b.float())
|
||||
|
||||
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
||||
weight[:] = self.calculate_weight(self.patches[key], weight.clone(), key)
|
||||
return self.model
|
||||
|
||||
def calculate_weight(self, patches, weight, key):
|
||||
for p in patches:
|
||||
alpha = p[0]
|
||||
v = p[1]
|
||||
strength_model = p[2]
|
||||
|
||||
if strength_model != 1.0:
|
||||
weight *= strength_model
|
||||
|
||||
if isinstance(v, list):
|
||||
v = (self.calculate_weight(v[1:], v[0].clone(), key), )
|
||||
|
||||
if len(v) == 1:
|
||||
w1 = v[0]
|
||||
if w1.shape != weight.shape:
|
||||
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
|
||||
else:
|
||||
weight += alpha * w1.type(weight.dtype).to(weight.device)
|
||||
elif len(v) == 4: #lora/locon
|
||||
mat1 = v[0]
|
||||
mat2 = v[1]
|
||||
if v[2] is not None:
|
||||
alpha *= v[2] / mat2.shape[0]
|
||||
if v[3] is not None:
|
||||
#locon mid weights, hopefully the math is fine because I didn't properly test it
|
||||
final_shape = [mat2.shape[1], mat2.shape[0], v[3].shape[2], v[3].shape[3]]
|
||||
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1).float(), v[3].transpose(0, 1).flatten(start_dim=1).float()).reshape(final_shape).transpose(0, 1)
|
||||
weight += (alpha * torch.mm(mat1.flatten(start_dim=1).float(), mat2.flatten(start_dim=1).float())).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
||||
elif len(v) == 8: #lokr
|
||||
w1 = v[0]
|
||||
w2 = v[1]
|
||||
w1_a = v[3]
|
||||
w1_b = v[4]
|
||||
w2_a = v[5]
|
||||
w2_b = v[6]
|
||||
t2 = v[7]
|
||||
dim = None
|
||||
|
||||
if w1 is None:
|
||||
dim = w1_b.shape[0]
|
||||
w1 = torch.mm(w1_a.float(), w1_b.float())
|
||||
|
||||
if w2 is None:
|
||||
dim = w2_b.shape[0]
|
||||
if t2 is None:
|
||||
w2 = torch.mm(w2_a.float(), w2_b.float())
|
||||
else:
|
||||
w2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2_b.float(), w2_a.float())
|
||||
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
if v[2] is not None and dim is not None:
|
||||
alpha *= v[2] / dim
|
||||
|
||||
weight += alpha * torch.kron(w1.float(), w2.float()).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
||||
else: #loha
|
||||
w1a = v[0]
|
||||
w1b = v[1]
|
||||
if v[2] is not None:
|
||||
alpha *= v[2] / w1b.shape[0]
|
||||
w2a = v[3]
|
||||
w2b = v[4]
|
||||
if v[5] is not None: #cp decomposition
|
||||
t1 = v[5]
|
||||
t2 = v[6]
|
||||
m1 = torch.einsum('i j k l, j r, i p -> p r k l', t1.float(), w1b.float(), w1a.float())
|
||||
m2 = torch.einsum('i j k l, j r, i p -> p r k l', t2.float(), w2b.float(), w2a.float())
|
||||
else:
|
||||
m1 = torch.mm(w1a.float(), w1b.float())
|
||||
m2 = torch.mm(w2a.float(), w2b.float())
|
||||
|
||||
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype).to(weight.device)
|
||||
return weight
|
||||
|
||||
def unpatch_model(self):
|
||||
model_sd = self.model_state_dict()
|
||||
keys = list(self.backup.keys())
|
||||
|
|
|
@ -18,9 +18,9 @@ class ModelMergeSimple:
|
|||
|
||||
def merge(self, model1, model2, ratio):
|
||||
m = model1.clone()
|
||||
sd = model2.model_state_dict("diffusion_model.")
|
||||
for k in sd:
|
||||
m.add_patches({k: (sd[k], )}, 1.0 - ratio, ratio)
|
||||
kp = model2.get_key_patches("diffusion_model.")
|
||||
for k in kp:
|
||||
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
||||
return (m, )
|
||||
|
||||
class ModelMergeBlocks:
|
||||
|
@ -39,10 +39,10 @@ class ModelMergeBlocks:
|
|||
|
||||
def merge(self, model1, model2, **kwargs):
|
||||
m = model1.clone()
|
||||
sd = model2.model_state_dict("diffusion_model.")
|
||||
kp = model2.get_key_patches("diffusion_model.")
|
||||
default_ratio = next(iter(kwargs.values()))
|
||||
|
||||
for k in sd:
|
||||
for k in kp:
|
||||
ratio = default_ratio
|
||||
k_unet = k[len("diffusion_model."):]
|
||||
|
||||
|
@ -52,7 +52,7 @@ class ModelMergeBlocks:
|
|||
ratio = kwargs[arg]
|
||||
last_arg_size = len(arg)
|
||||
|
||||
m.add_patches({k: (sd[k], )}, 1.0 - ratio, ratio)
|
||||
m.add_patches({k: kp[k]}, 1.0 - ratio, ratio)
|
||||
return (m, )
|
||||
|
||||
class CheckpointSave:
|
||||
|
|
Loading…
Reference in New Issue