Refactor previews into one command line argument.
Clean up a few things.
This commit is contained in:
parent
081134f5c8
commit
a3a713b6c5
|
@ -184,7 +184,9 @@ You can set this command line setting to disable the upcasting to fp32 in some c
|
||||||
|
|
||||||
## How to show high-quality previews?
|
## How to show high-quality previews?
|
||||||
|
|
||||||
The default installation includes a fast latent preview method that's low-resolution. To enable higher-quality previews with [TAESD](https://github.com/madebyollin/taesd), download the [taesd_encoder.pth](https://github.com/madebyollin/taesd/raw/main/taesd_encoder.pth) and [taesd_decoder.pth](https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth) models and place them in the `models/taesd` folder. Once they're installed, restart ComfyUI to enable high-quality previews.
|
Use ```--preview-method auto``` to enable previews.
|
||||||
|
|
||||||
|
The default installation includes a fast latent preview method that's low-resolution. To enable higher-quality previews with [TAESD](https://github.com/madebyollin/taesd), download the [taesd_encoder.pth](https://github.com/madebyollin/taesd/raw/main/taesd_encoder.pth) and [taesd_decoder.pth](https://github.com/madebyollin/taesd/raw/main/taesd_decoder.pth) models and place them in the `models/vae_approx` folder. Once they're installed, restart ComfyUI to enable high-quality previews.
|
||||||
|
|
||||||
## Support and dev channel
|
## Support and dev channel
|
||||||
|
|
||||||
|
|
|
@ -45,11 +45,12 @@ parser.add_argument("--force-fp32", action="store_true", help="Force fp32 (If th
|
||||||
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
parser.add_argument("--directml", type=int, nargs="?", metavar="DIRECTML_DEVICE", const=-1, help="Use torch-directml.")
|
||||||
|
|
||||||
class LatentPreviewMethod(enum.Enum):
|
class LatentPreviewMethod(enum.Enum):
|
||||||
|
NoPreviews = "none"
|
||||||
Auto = "auto"
|
Auto = "auto"
|
||||||
Latent2RGB = "latent2rgb"
|
Latent2RGB = "latent2rgb"
|
||||||
TAESD = "taesd"
|
TAESD = "taesd"
|
||||||
parser.add_argument("--disable-previews", action="store_true", help="Disable showing node previews.")
|
|
||||||
parser.add_argument("--default-preview-method", type=str, default=LatentPreviewMethod.Auto, metavar="PREVIEW_METHOD", help="Default preview method for sampler nodes.")
|
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
|
||||||
|
|
||||||
attn_group = parser.add_mutually_exclusive_group()
|
attn_group = parser.add_mutually_exclusive_group()
|
||||||
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization instead of the sub-quadratic one. Ignored when xformers is used.")
|
attn_group.add_argument("--use-split-cross-attention", action="store_true", help="Use the split cross attention optimization instead of the sub-quadratic one. Ignored when xformers is used.")
|
||||||
|
|
|
@ -50,9 +50,9 @@ class TAESD(nn.Module):
|
||||||
self.encoder = Encoder()
|
self.encoder = Encoder()
|
||||||
self.decoder = Decoder()
|
self.decoder = Decoder()
|
||||||
if encoder_path is not None:
|
if encoder_path is not None:
|
||||||
self.encoder.load_state_dict(torch.load(encoder_path, map_location="cpu"))
|
self.encoder.load_state_dict(torch.load(encoder_path, map_location="cpu", weights_only=True))
|
||||||
if decoder_path is not None:
|
if decoder_path is not None:
|
||||||
self.decoder.load_state_dict(torch.load(decoder_path, map_location="cpu"))
|
self.decoder.load_state_dict(torch.load(decoder_path, map_location="cpu", weights_only=True))
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def scale_latents(x):
|
def scale_latents(x):
|
||||||
|
|
|
@ -1,7 +1,6 @@
|
||||||
import torch
|
import torch
|
||||||
import math
|
import math
|
||||||
import struct
|
import struct
|
||||||
import comfy.model_management
|
|
||||||
|
|
||||||
def load_torch_file(ckpt, safe_load=False):
|
def load_torch_file(ckpt, safe_load=False):
|
||||||
if ckpt.lower().endswith(".safetensors"):
|
if ckpt.lower().endswith(".safetensors"):
|
||||||
|
@ -167,8 +166,6 @@ def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_am
|
||||||
out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device="cpu")
|
out_div = torch.zeros((s.shape[0], out_channels, round(s.shape[2] * upscale_amount), round(s.shape[3] * upscale_amount)), device="cpu")
|
||||||
for y in range(0, s.shape[2], tile_y - overlap):
|
for y in range(0, s.shape[2], tile_y - overlap):
|
||||||
for x in range(0, s.shape[3], tile_x - overlap):
|
for x in range(0, s.shape[3], tile_x - overlap):
|
||||||
comfy.model_management.throw_exception_if_processing_interrupted()
|
|
||||||
|
|
||||||
s_in = s[:,:,y:y+tile_y,x:x+tile_x]
|
s_in = s[:,:,y:y+tile_y,x:x+tile_x]
|
||||||
|
|
||||||
ps = function(s_in).cpu()
|
ps = function(s_in).cpu()
|
||||||
|
|
|
@ -18,7 +18,7 @@ folder_names_and_paths["clip_vision"] = ([os.path.join(models_dir, "clip_vision"
|
||||||
folder_names_and_paths["style_models"] = ([os.path.join(models_dir, "style_models")], supported_pt_extensions)
|
folder_names_and_paths["style_models"] = ([os.path.join(models_dir, "style_models")], supported_pt_extensions)
|
||||||
folder_names_and_paths["embeddings"] = ([os.path.join(models_dir, "embeddings")], supported_pt_extensions)
|
folder_names_and_paths["embeddings"] = ([os.path.join(models_dir, "embeddings")], supported_pt_extensions)
|
||||||
folder_names_and_paths["diffusers"] = ([os.path.join(models_dir, "diffusers")], ["folder"])
|
folder_names_and_paths["diffusers"] = ([os.path.join(models_dir, "diffusers")], ["folder"])
|
||||||
folder_names_and_paths["taesd"] = ([os.path.join(models_dir, "taesd")], supported_pt_extensions)
|
folder_names_and_paths["vae_approx"] = ([os.path.join(models_dir, "vae_approx")], supported_pt_extensions)
|
||||||
|
|
||||||
folder_names_and_paths["controlnet"] = ([os.path.join(models_dir, "controlnet"), os.path.join(models_dir, "t2i_adapter")], supported_pt_extensions)
|
folder_names_and_paths["controlnet"] = ([os.path.join(models_dir, "controlnet"), os.path.join(models_dir, "t2i_adapter")], supported_pt_extensions)
|
||||||
folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], supported_pt_extensions)
|
folder_names_and_paths["gligen"] = ([os.path.join(models_dir, "gligen")], supported_pt_extensions)
|
||||||
|
|
|
@ -0,0 +1,95 @@
|
||||||
|
import torch
|
||||||
|
from PIL import Image, ImageOps
|
||||||
|
from io import BytesIO
|
||||||
|
import struct
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from comfy.cli_args import args, LatentPreviewMethod
|
||||||
|
from comfy.taesd.taesd import TAESD
|
||||||
|
import folder_paths
|
||||||
|
|
||||||
|
MAX_PREVIEW_RESOLUTION = 512
|
||||||
|
|
||||||
|
class LatentPreviewer:
|
||||||
|
def decode_latent_to_preview(self, x0):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def decode_latent_to_preview_image(self, preview_format, x0):
|
||||||
|
preview_image = self.decode_latent_to_preview(x0)
|
||||||
|
preview_image = ImageOps.contain(preview_image, (MAX_PREVIEW_RESOLUTION, MAX_PREVIEW_RESOLUTION), Image.ANTIALIAS)
|
||||||
|
|
||||||
|
preview_type = 1
|
||||||
|
if preview_format == "JPEG":
|
||||||
|
preview_type = 1
|
||||||
|
elif preview_format == "PNG":
|
||||||
|
preview_type = 2
|
||||||
|
|
||||||
|
bytesIO = BytesIO()
|
||||||
|
header = struct.pack(">I", preview_type)
|
||||||
|
bytesIO.write(header)
|
||||||
|
preview_image.save(bytesIO, format=preview_format, quality=95)
|
||||||
|
preview_bytes = bytesIO.getvalue()
|
||||||
|
return preview_bytes
|
||||||
|
|
||||||
|
class TAESDPreviewerImpl(LatentPreviewer):
|
||||||
|
def __init__(self, taesd):
|
||||||
|
self.taesd = taesd
|
||||||
|
|
||||||
|
def decode_latent_to_preview(self, x0):
|
||||||
|
x_sample = self.taesd.decoder(x0)[0].detach()
|
||||||
|
# x_sample = self.taesd.unscale_latents(x_sample).div(4).add(0.5) # returns value in [-2, 2]
|
||||||
|
x_sample = x_sample.sub(0.5).mul(2)
|
||||||
|
|
||||||
|
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||||
|
x_sample = x_sample.astype(np.uint8)
|
||||||
|
|
||||||
|
preview_image = Image.fromarray(x_sample)
|
||||||
|
return preview_image
|
||||||
|
|
||||||
|
|
||||||
|
class Latent2RGBPreviewer(LatentPreviewer):
|
||||||
|
def __init__(self):
|
||||||
|
self.latent_rgb_factors = torch.tensor([
|
||||||
|
# R G B
|
||||||
|
[0.298, 0.207, 0.208], # L1
|
||||||
|
[0.187, 0.286, 0.173], # L2
|
||||||
|
[-0.158, 0.189, 0.264], # L3
|
||||||
|
[-0.184, -0.271, -0.473], # L4
|
||||||
|
], device="cpu")
|
||||||
|
|
||||||
|
def decode_latent_to_preview(self, x0):
|
||||||
|
latent_image = x0[0].permute(1, 2, 0).cpu() @ self.latent_rgb_factors
|
||||||
|
|
||||||
|
latents_ubyte = (((latent_image + 1) / 2)
|
||||||
|
.clamp(0, 1) # change scale from -1..1 to 0..1
|
||||||
|
.mul(0xFF) # to 0..255
|
||||||
|
.byte()).cpu()
|
||||||
|
|
||||||
|
return Image.fromarray(latents_ubyte.numpy())
|
||||||
|
|
||||||
|
|
||||||
|
def get_previewer(device):
|
||||||
|
previewer = None
|
||||||
|
method = args.preview_method
|
||||||
|
if method != LatentPreviewMethod.NoPreviews:
|
||||||
|
# TODO previewer methods
|
||||||
|
taesd_decoder_path = folder_paths.get_full_path("vae_approx", "taesd_decoder.pth")
|
||||||
|
|
||||||
|
if method == LatentPreviewMethod.Auto:
|
||||||
|
method = LatentPreviewMethod.Latent2RGB
|
||||||
|
if taesd_decoder_path:
|
||||||
|
method = LatentPreviewMethod.TAESD
|
||||||
|
|
||||||
|
if method == LatentPreviewMethod.TAESD:
|
||||||
|
if taesd_decoder_path:
|
||||||
|
taesd = TAESD(None, taesd_decoder_path).to(device)
|
||||||
|
previewer = TAESDPreviewerImpl(taesd)
|
||||||
|
else:
|
||||||
|
print("Warning: TAESD previews enabled, but could not find models/vae_approx/taesd_decoder.pth")
|
||||||
|
|
||||||
|
if previewer is None:
|
||||||
|
previewer = Latent2RGBPreviewer()
|
||||||
|
return previewer
|
||||||
|
|
||||||
|
|
94
nodes.py
94
nodes.py
|
@ -7,15 +7,12 @@ import hashlib
|
||||||
import traceback
|
import traceback
|
||||||
import math
|
import math
|
||||||
import time
|
import time
|
||||||
import struct
|
|
||||||
from io import BytesIO
|
|
||||||
|
|
||||||
from PIL import Image, ImageOps
|
from PIL import Image, ImageOps
|
||||||
from PIL.PngImagePlugin import PngInfo
|
from PIL.PngImagePlugin import PngInfo
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import safetensors.torch
|
import safetensors.torch
|
||||||
|
|
||||||
|
|
||||||
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
|
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
|
||||||
|
|
||||||
|
|
||||||
|
@ -24,8 +21,6 @@ import comfy.samplers
|
||||||
import comfy.sample
|
import comfy.sample
|
||||||
import comfy.sd
|
import comfy.sd
|
||||||
import comfy.utils
|
import comfy.utils
|
||||||
from comfy.cli_args import args, LatentPreviewMethod
|
|
||||||
from comfy.taesd.taesd import TAESD
|
|
||||||
|
|
||||||
import comfy.clip_vision
|
import comfy.clip_vision
|
||||||
|
|
||||||
|
@ -33,33 +28,7 @@ import comfy.model_management
|
||||||
import importlib
|
import importlib
|
||||||
|
|
||||||
import folder_paths
|
import folder_paths
|
||||||
|
import latent_preview
|
||||||
|
|
||||||
class LatentPreviewer:
|
|
||||||
def decode_latent_to_preview(self, device, x0):
|
|
||||||
pass
|
|
||||||
|
|
||||||
|
|
||||||
class Latent2RGBPreviewer(LatentPreviewer):
|
|
||||||
def __init__(self):
|
|
||||||
self.latent_rgb_factors = torch.tensor([
|
|
||||||
# R G B
|
|
||||||
[0.298, 0.207, 0.208], # L1
|
|
||||||
[0.187, 0.286, 0.173], # L2
|
|
||||||
[-0.158, 0.189, 0.264], # L3
|
|
||||||
[-0.184, -0.271, -0.473], # L4
|
|
||||||
], device="cpu")
|
|
||||||
|
|
||||||
def decode_latent_to_preview(self, device, x0):
|
|
||||||
latent_image = x0[0].permute(1, 2, 0).cpu() @ self.latent_rgb_factors
|
|
||||||
|
|
||||||
latents_ubyte = (((latent_image + 1) / 2)
|
|
||||||
.clamp(0, 1) # change scale from -1..1 to 0..1
|
|
||||||
.mul(0xFF) # to 0..255
|
|
||||||
.byte()).cpu()
|
|
||||||
|
|
||||||
return Image.fromarray(latents_ubyte.numpy())
|
|
||||||
|
|
||||||
|
|
||||||
def before_node_execution():
|
def before_node_execution():
|
||||||
comfy.model_management.throw_exception_if_processing_interrupted()
|
comfy.model_management.throw_exception_if_processing_interrupted()
|
||||||
|
@ -68,7 +37,6 @@ def interrupt_processing(value=True):
|
||||||
comfy.model_management.interrupt_current_processing(value)
|
comfy.model_management.interrupt_current_processing(value)
|
||||||
|
|
||||||
MAX_RESOLUTION=8192
|
MAX_RESOLUTION=8192
|
||||||
MAX_PREVIEW_RESOLUTION = 512
|
|
||||||
|
|
||||||
class CLIPTextEncode:
|
class CLIPTextEncode:
|
||||||
@classmethod
|
@classmethod
|
||||||
|
@ -279,22 +247,6 @@ class VAEEncodeForInpaint:
|
||||||
|
|
||||||
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
|
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
|
||||||
|
|
||||||
class TAESDPreviewerImpl(LatentPreviewer):
|
|
||||||
def __init__(self, taesd):
|
|
||||||
self.taesd = taesd
|
|
||||||
|
|
||||||
def decode_latent_to_preview(self, device, x0):
|
|
||||||
x_sample = self.taesd.decoder(x0.to(device))[0].detach()
|
|
||||||
# x_sample = self.taesd.unscale_latents(x_sample).div(4).add(0.5) # returns value in [-2, 2]
|
|
||||||
x_sample = x_sample.sub(0.5).mul(2)
|
|
||||||
|
|
||||||
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
|
|
||||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
|
||||||
x_sample = x_sample.astype(np.uint8)
|
|
||||||
|
|
||||||
preview_image = Image.fromarray(x_sample)
|
|
||||||
return preview_image
|
|
||||||
|
|
||||||
class SaveLatent:
|
class SaveLatent:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.output_dir = folder_paths.get_output_directory()
|
self.output_dir = folder_paths.get_output_directory()
|
||||||
|
@ -978,25 +930,6 @@ class SetLatentNoiseMask:
|
||||||
return (s,)
|
return (s,)
|
||||||
|
|
||||||
|
|
||||||
def decode_latent_to_preview_image(previewer, device, preview_format, x0):
|
|
||||||
preview_image = previewer.decode_latent_to_preview(device, x0)
|
|
||||||
preview_image = ImageOps.contain(preview_image, (MAX_PREVIEW_RESOLUTION, MAX_PREVIEW_RESOLUTION), Image.ANTIALIAS)
|
|
||||||
|
|
||||||
preview_type = 1
|
|
||||||
if preview_format == "JPEG":
|
|
||||||
preview_type = 1
|
|
||||||
elif preview_format == "PNG":
|
|
||||||
preview_type = 2
|
|
||||||
|
|
||||||
bytesIO = BytesIO()
|
|
||||||
header = struct.pack(">I", preview_type)
|
|
||||||
bytesIO.write(header)
|
|
||||||
preview_image.save(bytesIO, format=preview_format)
|
|
||||||
preview_bytes = bytesIO.getvalue()
|
|
||||||
|
|
||||||
return preview_bytes
|
|
||||||
|
|
||||||
|
|
||||||
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
||||||
device = comfy.model_management.get_torch_device()
|
device = comfy.model_management.get_torch_device()
|
||||||
latent_image = latent["samples"]
|
latent_image = latent["samples"]
|
||||||
|
@ -1015,34 +948,13 @@ def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive,
|
||||||
if preview_format not in ["JPEG", "PNG"]:
|
if preview_format not in ["JPEG", "PNG"]:
|
||||||
preview_format = "JPEG"
|
preview_format = "JPEG"
|
||||||
|
|
||||||
previewer = None
|
previewer = latent_preview.get_previewer(device)
|
||||||
if not args.disable_previews:
|
|
||||||
# TODO previewer methods
|
|
||||||
taesd_encoder_path = folder_paths.get_full_path("taesd", "taesd_encoder.pth")
|
|
||||||
taesd_decoder_path = folder_paths.get_full_path("taesd", "taesd_decoder.pth")
|
|
||||||
|
|
||||||
method = args.default_preview_method
|
|
||||||
|
|
||||||
if method == LatentPreviewMethod.Auto:
|
|
||||||
method = LatentPreviewMethod.Latent2RGB
|
|
||||||
if taesd_encoder_path and taesd_encoder_path:
|
|
||||||
method = LatentPreviewMethod.TAESD
|
|
||||||
|
|
||||||
if method == LatentPreviewMethod.TAESD:
|
|
||||||
if taesd_encoder_path and taesd_encoder_path:
|
|
||||||
taesd = TAESD(taesd_encoder_path, taesd_decoder_path).to(device)
|
|
||||||
previewer = TAESDPreviewerImpl(taesd)
|
|
||||||
else:
|
|
||||||
print("Warning: TAESD previews enabled, but could not find models/taesd/taesd_encoder.pth and models/taesd/taesd_decoder.pth")
|
|
||||||
|
|
||||||
if previewer is None:
|
|
||||||
previewer = Latent2RGBPreviewer()
|
|
||||||
|
|
||||||
pbar = comfy.utils.ProgressBar(steps)
|
pbar = comfy.utils.ProgressBar(steps)
|
||||||
def callback(step, x0, x, total_steps):
|
def callback(step, x0, x, total_steps):
|
||||||
preview_bytes = None
|
preview_bytes = None
|
||||||
if previewer:
|
if previewer:
|
||||||
preview_bytes = decode_latent_to_preview_image(previewer, device, preview_format, x0)
|
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
|
||||||
pbar.update_absolute(step + 1, total_steps, preview_bytes)
|
pbar.update_absolute(step + 1, total_steps, preview_bytes)
|
||||||
|
|
||||||
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
||||||
|
|
Loading…
Reference in New Issue