Only append zero to noise schedule if last sigma isn't zero.

This commit is contained in:
comfyanonymous 2024-07-20 12:27:42 -04:00
parent 11b74147ee
commit 95fa9545f1
1 changed files with 16 additions and 4 deletions

View File

@ -313,13 +313,18 @@ def simple_scheduler(model_sampling, steps):
def ddim_scheduler(model_sampling, steps):
s = model_sampling
sigs = []
ss = max(len(s.sigmas) // steps, 1)
x = 1
if math.isclose(float(s.sigmas[x]), 0, abs_tol=0.00001):
steps += 1
sigs = []
else:
sigs = [0.0]
ss = max(len(s.sigmas) // steps, 1)
while x < len(s.sigmas):
sigs += [float(s.sigmas[x])]
x += ss
sigs = sigs[::-1]
sigs += [0.0]
return torch.FloatTensor(sigs)
def normal_scheduler(model_sampling, steps, sgm=False, floor=False):
@ -327,16 +332,23 @@ def normal_scheduler(model_sampling, steps, sgm=False, floor=False):
start = s.timestep(s.sigma_max)
end = s.timestep(s.sigma_min)
append_zero = True
if sgm:
timesteps = torch.linspace(start, end, steps + 1)[:-1]
else:
if math.isclose(float(s.sigma(end)), 0, abs_tol=0.00001):
steps += 1
append_zero = False
timesteps = torch.linspace(start, end, steps)
sigs = []
for x in range(len(timesteps)):
ts = timesteps[x]
sigs.append(s.sigma(ts))
sigs.append(float(s.sigma(ts)))
if append_zero:
sigs += [0.0]
return torch.FloatTensor(sigs)
# Implemented based on: https://arxiv.org/abs/2407.12173