SD3 Support.

This commit is contained in:
comfyanonymous 2024-06-10 13:26:25 -04:00
parent a5e6a632f9
commit 8c4a9befa7
17 changed files with 132182 additions and 5 deletions

View File

@ -25,8 +25,9 @@ class SD15(LatentFormat):
self.taesd_decoder_name = "taesd_decoder" self.taesd_decoder_name = "taesd_decoder"
class SDXL(LatentFormat): class SDXL(LatentFormat):
scale_factor = 0.13025
def __init__(self): def __init__(self):
self.scale_factor = 0.13025
self.latent_rgb_factors = [ self.latent_rgb_factors = [
# R G B # R G B
[ 0.3920, 0.4054, 0.4549], [ 0.3920, 0.4054, 0.4549],
@ -104,3 +105,33 @@ class SC_B(LatentFormat):
[-0.3087, -0.1535, 0.0366], [-0.3087, -0.1535, 0.0366],
[ 0.0290, -0.1574, -0.4078] [ 0.0290, -0.1574, -0.4078]
] ]
class SD3(LatentFormat):
latent_channels = 16
def __init__(self):
self.scale_factor = 1.5305
self.shift_factor = 0.0609
self.latent_rgb_factors = [
[-0.0645, 0.0177, 0.1052],
[ 0.0028, 0.0312, 0.0650],
[ 0.1848, 0.0762, 0.0360],
[ 0.0944, 0.0360, 0.0889],
[ 0.0897, 0.0506, -0.0364],
[-0.0020, 0.1203, 0.0284],
[ 0.0855, 0.0118, 0.0283],
[-0.0539, 0.0658, 0.1047],
[-0.0057, 0.0116, 0.0700],
[-0.0412, 0.0281, -0.0039],
[ 0.1106, 0.1171, 0.1220],
[-0.0248, 0.0682, -0.0481],
[ 0.0815, 0.0846, 0.1207],
[-0.0120, -0.0055, -0.0867],
[-0.0749, -0.0634, -0.0456],
[-0.1418, -0.1457, -0.1259]
]
def process_in(self, latent):
return (latent - self.shift_factor) * self.scale_factor
def process_out(self, latent):
return (latent / self.scale_factor) + self.shift_factor

File diff suppressed because it is too large Load Diff

View File

@ -5,11 +5,13 @@ from comfy.ldm.cascade.stage_c import StageC
from comfy.ldm.cascade.stage_b import StageB from comfy.ldm.cascade.stage_b import StageB
from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation from comfy.ldm.modules.encoders.noise_aug_modules import CLIPEmbeddingNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation from comfy.ldm.modules.diffusionmodules.upscaling import ImageConcatWithNoiseAugmentation
from comfy.ldm.modules.diffusionmodules.mmdit import OpenAISignatureMMDITWrapper
import comfy.model_management import comfy.model_management
import comfy.conds import comfy.conds
import comfy.ops import comfy.ops
from enum import Enum from enum import Enum
from . import utils from . import utils
import comfy.latent_formats
class ModelType(Enum): class ModelType(Enum):
EPS = 1 EPS = 1
@ -17,6 +19,7 @@ class ModelType(Enum):
V_PREDICTION_EDM = 3 V_PREDICTION_EDM = 3
STABLE_CASCADE = 4 STABLE_CASCADE = 4
EDM = 5 EDM = 5
FLOW = 6
from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling from comfy.model_sampling import EPS, V_PREDICTION, EDM, ModelSamplingDiscrete, ModelSamplingContinuousEDM, StableCascadeSampling
@ -32,6 +35,9 @@ def model_sampling(model_config, model_type):
elif model_type == ModelType.V_PREDICTION_EDM: elif model_type == ModelType.V_PREDICTION_EDM:
c = V_PREDICTION c = V_PREDICTION
s = ModelSamplingContinuousEDM s = ModelSamplingContinuousEDM
elif model_type == ModelType.FLOW:
c = comfy.model_sampling.CONST
s = comfy.model_sampling.ModelSamplingDiscreteFlow
elif model_type == ModelType.STABLE_CASCADE: elif model_type == ModelType.STABLE_CASCADE:
c = EPS c = EPS
s = StableCascadeSampling s = StableCascadeSampling
@ -557,3 +563,23 @@ class StableCascade_B(BaseModel):
out["effnet"] = comfy.conds.CONDRegular(prior) out["effnet"] = comfy.conds.CONDRegular(prior)
out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,))) out["sca"] = comfy.conds.CONDRegular(torch.zeros((1,)))
return out return out
class SD3(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=OpenAISignatureMMDITWrapper)
def encode_adm(self, **kwargs):
return kwargs["pooled_output"]
def extra_conds(self, **kwargs):
out = {}
adm = self.encode_adm(**kwargs)
if adm is not None:
out['y'] = comfy.conds.CONDRegular(adm)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out

View File

@ -1,5 +1,6 @@
import comfy.supported_models import comfy.supported_models
import comfy.supported_models_base import comfy.supported_models_base
import math
import logging import logging
def count_blocks(state_dict_keys, prefix_string): def count_blocks(state_dict_keys, prefix_string):
@ -26,12 +27,47 @@ def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1] context_dim = state_dict['{}0.attn2.to_k.weight'.format(transformer_prefix)].shape[1]
use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2 use_linear_in_transformer = len(state_dict['{}1.proj_in.weight'.format(prefix)].shape) == 2
time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict time_stack = '{}1.time_stack.0.attn1.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn1.to_q.weight'.format(prefix) in state_dict
return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack time_stack_cross = '{}1.time_stack.0.attn2.to_q.weight'.format(prefix) in state_dict or '{}1.time_mix_blocks.0.attn2.to_q.weight'.format(prefix) in state_dict
return last_transformer_depth, context_dim, use_linear_in_transformer, time_stack, time_stack_cross
return None return None
def detect_unet_config(state_dict, key_prefix): def detect_unet_config(state_dict, key_prefix):
state_dict_keys = list(state_dict.keys()) state_dict_keys = list(state_dict.keys())
if '{}joint_blocks.0.context_block.attn.qkv.weight'.format(key_prefix) in state_dict_keys: #mmdit model
unet_config = {}
unet_config["in_channels"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[1]
patch_size = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[2]
unet_config["patch_size"] = patch_size
unet_config["out_channels"] = state_dict['{}final_layer.linear.weight'.format(key_prefix)].shape[0] // (patch_size * patch_size)
unet_config["depth"] = state_dict['{}x_embedder.proj.weight'.format(key_prefix)].shape[0] // 64
unet_config["input_size"] = None
y_key = '{}y_embedder.mlp.0.weight'.format(key_prefix)
if y_key in state_dict_keys:
unet_config["adm_in_channels"] = state_dict[y_key].shape[1]
context_key = '{}context_embedder.weight'.format(key_prefix)
if context_key in state_dict_keys:
in_features = state_dict[context_key].shape[1]
out_features = state_dict[context_key].shape[0]
unet_config["context_embedder_config"] = {"target": "torch.nn.Linear", "params": {"in_features": in_features, "out_features": out_features}}
num_patches_key = '{}pos_embed'.format(key_prefix)
if num_patches_key in state_dict_keys:
num_patches = state_dict[num_patches_key].shape[1]
unet_config["num_patches"] = num_patches
unet_config["pos_embed_max_size"] = round(math.sqrt(num_patches))
rms_qk = '{}joint_blocks.0.context_block.attn.ln_q.weight'.format(key_prefix)
if rms_qk in state_dict_keys:
unet_config["qk_norm"] = "rms"
unet_config["pos_embed_scaling_factor"] = None #unused for inference
context_processor = '{}context_processor.layers.0.attn.qkv.weight'.format(key_prefix)
if context_processor in state_dict_keys:
unet_config["context_processor_layers"] = count_blocks(state_dict_keys, '{}context_processor.layers.'.format(key_prefix) + '{}.')
return unet_config
if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade if '{}clf.1.weight'.format(key_prefix) in state_dict_keys: #stable cascade
unet_config = {} unet_config = {}
text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix) text_mapper_name = '{}clip_txt_mapper.weight'.format(key_prefix)
@ -58,7 +94,6 @@ def detect_unet_config(state_dict, key_prefix):
unet_config['nhead'] = [-1, 9, 18, 18] unet_config['nhead'] = [-1, 9, 18, 18]
unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]] unet_config['blocks'] = [[2, 4, 14, 4], [4, 14, 4, 2]]
unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]] unet_config['block_repeat'] = [[1, 1, 1, 1], [2, 2, 2, 2]]
return unet_config return unet_config
unet_config = { unet_config = {
@ -93,6 +128,7 @@ def detect_unet_config(state_dict, key_prefix):
use_linear_in_transformer = False use_linear_in_transformer = False
video_model = False video_model = False
video_model_cross = False
current_res = 1 current_res = 1
count = 0 count = 0
@ -136,6 +172,7 @@ def detect_unet_config(state_dict, key_prefix):
context_dim = out[1] context_dim = out[1]
use_linear_in_transformer = out[2] use_linear_in_transformer = out[2]
video_model = out[3] video_model = out[3]
video_model_cross = out[4]
else: else:
transformer_depth.append(0) transformer_depth.append(0)
@ -176,6 +213,7 @@ def detect_unet_config(state_dict, key_prefix):
unet_config["video_kernel_size"] = [3, 1, 1] unet_config["video_kernel_size"] = [3, 1, 1]
unet_config["use_temporal_resblock"] = True unet_config["use_temporal_resblock"] = True
unet_config["use_temporal_attention"] = True unet_config["use_temporal_attention"] = True
unet_config["disable_temporal_crossattention"] = not video_model_cross
else: else:
unet_config["use_temporal_resblock"] = False unet_config["use_temporal_resblock"] = False
unet_config["use_temporal_attention"] = False unet_config["use_temporal_attention"] = False

View File

@ -33,6 +33,19 @@ class EDM(V_PREDICTION):
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1)) sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5 return model_input * self.sigma_data ** 2 / (sigma ** 2 + self.sigma_data ** 2) + model_output * sigma * self.sigma_data / (sigma ** 2 + self.sigma_data ** 2) ** 0.5
class CONST:
def calculate_input(self, sigma, noise):
return noise
def calculate_denoised(self, sigma, model_output, model_input):
sigma = sigma.view(sigma.shape[:1] + (1,) * (model_output.ndim - 1))
return model_input - model_output * sigma
def noise_scaling(self, sigma, noise, latent_image, max_denoise=False):
return sigma * noise + (1.0 - sigma) * latent_image
def inverse_noise_scaling(self, sigma, latent):
return latent / (1.0 - sigma)
class ModelSamplingDiscrete(torch.nn.Module): class ModelSamplingDiscrete(torch.nn.Module):
def __init__(self, model_config=None): def __init__(self, model_config=None):
@ -104,6 +117,12 @@ class ModelSamplingDiscrete(torch.nn.Module):
percent = 1.0 - percent percent = 1.0 - percent
return self.sigma(torch.tensor(percent * 999.0)).item() return self.sigma(torch.tensor(percent * 999.0)).item()
class ModelSamplingDiscreteEDM(ModelSamplingDiscrete):
def timestep(self, sigma):
return 0.25 * sigma.log()
def sigma(self, timestep):
return (timestep / 0.25).exp()
class ModelSamplingContinuousEDM(torch.nn.Module): class ModelSamplingContinuousEDM(torch.nn.Module):
def __init__(self, model_config=None): def __init__(self, model_config=None):
@ -149,6 +168,48 @@ class ModelSamplingContinuousEDM(torch.nn.Module):
log_sigma_min = math.log(self.sigma_min) log_sigma_min = math.log(self.sigma_min)
return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min) return math.exp((math.log(self.sigma_max) - log_sigma_min) * percent + log_sigma_min)
def time_snr_shift(alpha, t):
if alpha == 1.0:
return t
return alpha * t / (1 + (alpha - 1) * t)
class ModelSamplingDiscreteFlow(torch.nn.Module):
def __init__(self, model_config=None):
super().__init__()
if model_config is not None:
sampling_settings = model_config.sampling_settings
else:
sampling_settings = {}
self.set_parameters(shift=sampling_settings.get("shift", 1.0))
def set_parameters(self, shift=1.0, timesteps=1000):
self.shift = shift
ts = self.sigma(torch.arange(1, timesteps + 1, 1))
self.register_buffer('sigmas', ts)
@property
def sigma_min(self):
return self.sigmas[0]
@property
def sigma_max(self):
return self.sigmas[-1]
def timestep(self, sigma):
return sigma * 1000
def sigma(self, timestep):
return time_snr_shift(self.shift, timestep / 1000)
def percent_to_sigma(self, percent):
if percent <= 0.0:
return 1.0
if percent >= 1.0:
return 0.0
return 1.0 - percent
class StableCascadeSampling(ModelSamplingDiscrete): class StableCascadeSampling(ModelSamplingDiscrete):
def __init__(self, model_config=None): def __init__(self, model_config=None):
super().__init__() super().__init__()

View File

@ -19,6 +19,7 @@ from . import model_detection
from . import sd1_clip from . import sd1_clip
from . import sd2_clip from . import sd2_clip
from . import sdxl_clip from . import sdxl_clip
from . import sd3_clip
import comfy.model_patcher import comfy.model_patcher
import comfy.lora import comfy.lora
@ -395,9 +396,12 @@ def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DI
else: else:
clip_target.clip = sd1_clip.SD1ClipModel clip_target.clip = sd1_clip.SD1ClipModel
clip_target.tokenizer = sd1_clip.SD1Tokenizer clip_target.tokenizer = sd1_clip.SD1Tokenizer
else: elif len(clip_data) == 2:
clip_target.clip = sdxl_clip.SDXLClipModel clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer clip_target.tokenizer = sdxl_clip.SDXLTokenizer
elif len(clip_data) == 3:
clip_target.clip = sd3_clip.SD3ClipModel
clip_target.tokenizer = sd3_clip.SD3Tokenizer
clip = CLIP(clip_target, embedding_directory=embedding_directory) clip = CLIP(clip_target, embedding_directory=embedding_directory)
for c in clip_data: for c in clip_data:

91
comfy/sd3_clip.py Normal file
View File

@ -0,0 +1,91 @@
from comfy import sd1_clip
from comfy import sdxl_clip
from transformers import T5TokenizerFast
import comfy.t5
import torch
import os
import comfy.model_management
class T5XXLModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None):
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_config_xxl.json")
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config=textmodel_json_config, dtype=dtype, special_tokens={"end": 1, "pad": 0}, model_class=comfy.t5.T5)
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "t5_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='t5xxl', tokenizer_class=T5TokenizerFast, has_start_token=False, pad_to_max_length=False, max_length=99999999, min_length=77)
class SDT5XXLTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None):
super().__init__(embedding_directory=embedding_directory, clip_name="t5xxl", tokenizer=T5XXLTokenizer)
class SDT5XXLModel(sd1_clip.SD1ClipModel):
def __init__(self, device="cpu", dtype=None, **kwargs):
super().__init__(device=device, dtype=dtype, clip_name="t5xxl", clip_model=T5XXLModel, **kwargs)
class SD3Tokenizer:
def __init__(self, embedding_directory=None):
self.clip_l = sd1_clip.SDTokenizer(embedding_directory=embedding_directory)
self.clip_g = sdxl_clip.SDXLClipGTokenizer(embedding_directory=embedding_directory)
self.t5xxl = T5XXLTokenizer(embedding_directory=embedding_directory)
def tokenize_with_weights(self, text:str, return_word_ids=False):
out = {}
out["g"] = self.clip_g.tokenize_with_weights(text, return_word_ids)
out["l"] = self.clip_l.tokenize_with_weights(text, return_word_ids)
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids)
return out
def untokenize(self, token_weight_pair):
return self.clip_g.untokenize(token_weight_pair)
class SD3ClipModel(torch.nn.Module):
def __init__(self, device="cpu", dtype=None):
super().__init__()
self.clip_l = sd1_clip.SDClipModel(layer="hidden", layer_idx=-2, device=device, dtype=dtype, layer_norm_hidden_state=False, return_projected_pooled=False)
self.clip_g = sdxl_clip.SDXLClipG(device=device, dtype=dtype)
self.t5xxl = T5XXLModel(device=device, dtype=dtype)
def set_clip_options(self, options):
self.clip_l.set_clip_options(options)
self.clip_g.set_clip_options(options)
self.t5xxl.set_clip_options(options)
def reset_clip_options(self):
self.clip_g.reset_clip_options()
self.clip_l.reset_clip_options()
self.t5xxl.reset_clip_options()
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_l = token_weight_pairs["l"]
token_weight_pairs_g = token_weight_pairs["g"]
token_weight_pars_t5 = token_weight_pairs["t5xxl"]
lg_out = None
if len(token_weight_pairs_g) > 0 or len(token_weight_pairs_l) > 0:
l_out, l_pooled = self.clip_l.encode_token_weights(token_weight_pairs_l)
g_out, g_pooled = self.clip_g.encode_token_weights(token_weight_pairs_g)
lg_out = torch.cat([l_out, g_out], dim=-1)
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
out = lg_out
pooled = torch.cat((l_pooled, g_pooled), dim=-1)
else:
pooled = torch.zeros((1, 1280 + 768), device=comfy.model_management.intermediate_device())
t5_out, t5_pooled = self.t5xxl.encode_token_weights(token_weight_pars_t5)
if lg_out is not None:
out = torch.cat([lg_out, t5_out], dim=-2)
else:
out = t5_out
return out, pooled
def load_sd(self, sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
return self.clip_g.load_sd(sd)
elif "text_model.encoder.layers.1.mlp.fc1.weight" in sd:
return self.clip_l.load_sd(sd)
else:
return self.t5xxl.load_sd(sd)

View File

@ -5,6 +5,7 @@ from . import utils
from . import sd1_clip from . import sd1_clip
from . import sd2_clip from . import sd2_clip
from . import sdxl_clip from . import sdxl_clip
from . import sd3_clip
from . import supported_models_base from . import supported_models_base
from . import latent_formats from . import latent_formats
@ -488,6 +489,28 @@ class SDXL_instructpix2pix(SDXL):
def get_model(self, state_dict, prefix="", device=None): def get_model(self, state_dict, prefix="", device=None):
return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device) return model_base.SDXL_instructpix2pix(self, model_type=self.model_type(state_dict, prefix), device=device)
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p] class SD3(supported_models_base.BASE):
unet_config = {
"in_channels": 16,
"pos_embed_scaling_factor": None,
}
sampling_settings = {
"shift": 3.0,
}
unet_extra_config = {}
latent_format = latent_formats.SD3
text_encoder_key_prefix = ["text_encoders."] #TODO?
def get_model(self, state_dict, prefix="", device=None):
out = model_base.SD3(self, device=device)
return out
def clip_target(self):
return supported_models_base.ClipTarget(sd3_clip.SD3Tokenizer, sd3_clip.SD3ClipModel) #TODO?
models = [Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3]
models += [SVD_img2vid] models += [SVD_img2vid]

231
comfy/t5.py Normal file
View File

@ -0,0 +1,231 @@
import torch
import math
from comfy.ldm.modules.attention import optimized_attention_for_device
class T5LayerNorm(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-6, dtype=None, device=None, operations=None):
super().__init__()
self.weight = torch.nn.Parameter(torch.empty(hidden_size, dtype=dtype, device=device))
self.variance_epsilon = eps
def forward(self, x):
variance = x.pow(2).mean(-1, keepdim=True)
x = x * torch.rsqrt(variance + self.variance_epsilon)
return self.weight.to(device=x.device, dtype=x.dtype) * x
class T5DenseActDense(torch.nn.Module):
def __init__(self, model_dim, ff_dim, dtype, device, operations):
super().__init__()
self.wi = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x):
x = torch.nn.functional.relu(self.wi(x))
# x = self.dropout(x)
x = self.wo(x)
return x
class T5DenseGatedActDense(torch.nn.Module):
def __init__(self, model_dim, ff_dim, dtype, device, operations):
super().__init__()
self.wi_0 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
self.wi_1 = operations.Linear(model_dim, ff_dim, bias=False, dtype=dtype, device=device)
self.wo = operations.Linear(ff_dim, model_dim, bias=False, dtype=dtype, device=device)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x):
hidden_gelu = torch.nn.functional.gelu(self.wi_0(x), approximate="tanh")
hidden_linear = self.wi_1(x)
x = hidden_gelu * hidden_linear
# x = self.dropout(x)
x = self.wo(x)
return x
class T5LayerFF(torch.nn.Module):
def __init__(self, model_dim, ff_dim, ff_activation, dtype, device, operations):
super().__init__()
if ff_activation == "gelu_pytorch_tanh":
self.DenseReluDense = T5DenseGatedActDense(model_dim, ff_dim, dtype, device, operations)
elif ff_activation == "relu":
self.DenseReluDense = T5DenseActDense(model_dim, ff_dim, dtype, device, operations)
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x):
forwarded_states = self.layer_norm(x)
forwarded_states = self.DenseReluDense(forwarded_states)
# x = x + self.dropout(forwarded_states)
x += forwarded_states
return x
class T5Attention(torch.nn.Module):
def __init__(self, model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations):
super().__init__()
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.k = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.v = operations.Linear(model_dim, inner_dim, bias=False, dtype=dtype, device=device)
self.o = operations.Linear(inner_dim, model_dim, bias=False, dtype=dtype, device=device)
self.num_heads = num_heads
self.relative_attention_bias = None
if relative_attention_bias:
self.relative_attention_num_buckets = 32
self.relative_attention_max_distance = 128
self.relative_attention_bias = torch.nn.Embedding(self.relative_attention_num_buckets, self.num_heads, device=device)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device):
"""Compute binned relative position bias"""
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=True,
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
q = self.q(x)
k = self.k(x)
v = self.v(x)
if self.relative_attention_bias is not None:
past_bias = self.compute_bias(x.shape[1], x.shape[1], x.device)
if past_bias is not None:
if mask is not None:
mask = mask + past_bias
else:
mask = past_bias
out = optimized_attention(q, k * ((k.shape[-1] / self.num_heads) ** 0.5), v, self.num_heads, mask)
return self.o(out), past_bias
class T5LayerSelfAttention(torch.nn.Module):
def __init__(self, model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations):
super().__init__()
self.SelfAttention = T5Attention(model_dim, inner_dim, num_heads, relative_attention_bias, dtype, device, operations)
self.layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
normed_hidden_states = self.layer_norm(x)
output, past_bias = self.SelfAttention(self.layer_norm(x), mask=mask, past_bias=past_bias, optimized_attention=optimized_attention)
# x = x + self.dropout(attention_output)
x += output
return x, past_bias
class T5Block(torch.nn.Module):
def __init__(self, model_dim, inner_dim, ff_dim, ff_activation, num_heads, relative_attention_bias, dtype, device, operations):
super().__init__()
self.layer = torch.nn.ModuleList()
self.layer.append(T5LayerSelfAttention(model_dim, inner_dim, ff_dim, num_heads, relative_attention_bias, dtype, device, operations))
self.layer.append(T5LayerFF(model_dim, ff_dim, ff_activation, dtype, device, operations))
def forward(self, x, mask=None, past_bias=None, optimized_attention=None):
x, past_bias = self.layer[0](x, mask, past_bias, optimized_attention)
x = self.layer[-1](x)
return x, past_bias
class T5Stack(torch.nn.Module):
def __init__(self, num_layers, model_dim, inner_dim, ff_dim, ff_activation, num_heads, dtype, device, operations):
super().__init__()
self.block = torch.nn.ModuleList(
[T5Block(model_dim, inner_dim, ff_dim, ff_activation, num_heads, relative_attention_bias=(i == 0), dtype=dtype, device=device, operations=operations) for i in range(num_layers)]
)
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True):
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
intermediate = None
optimized_attention = optimized_attention_for_device(x.device, mask=attention_mask is not None, small_input=True)
past_bias = None
for i, l in enumerate(self.block):
x, past_bias = l(x, mask, past_bias, optimized_attention)
if i == intermediate_output:
intermediate = x.clone()
x = self.final_layer_norm(x)
if intermediate is not None and final_layer_norm_intermediate:
intermediate = self.final_layer_norm(intermediate)
return x, intermediate
class T5(torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
self.num_layers = config_dict["num_layers"]
model_dim = config_dict["d_model"]
self.encoder = T5Stack(self.num_layers, model_dim, model_dim, config_dict["d_ff"], config_dict["dense_act_fn"], config_dict["num_heads"], dtype, device, operations)
self.dtype = dtype
self.shared = torch.nn.Embedding(config_dict["vocab_size"], model_dim, device=device)
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, embeddings):
self.shared = embeddings
def forward(self, input_ids, *args, **kwargs):
x = self.shared(input_ids)
return self.encoder(x, *args, **kwargs)

21
comfy/t5_config_base.json Normal file
View File

@ -0,0 +1,21 @@
{
"d_ff": 3072,
"d_kv": 64,
"d_model": 768,
"decoder_start_token_id": 0,
"dropout_rate": 0.1,
"eos_token_id": 1,
"dense_act_fn": "relu",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"layer_norm_epsilon": 1e-06,
"model_type": "t5",
"num_decoder_layers": 12,
"num_heads": 12,
"num_layers": 12,
"output_past": true,
"pad_token_id": 0,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"vocab_size": 32128
}

21
comfy/t5_config_xxl.json Normal file
View File

@ -0,0 +1,21 @@
{
"d_ff": 10240,
"d_kv": 64,
"d_model": 4096,
"decoder_start_token_id": 0,
"dropout_rate": 0.1,
"eos_token_id": 1,
"dense_act_fn": "gelu_pytorch_tanh",
"initializer_factor": 1.0,
"is_encoder_decoder": true,
"layer_norm_epsilon": 1e-06,
"model_type": "t5",
"num_decoder_layers": 24,
"num_heads": 64,
"num_layers": 24,
"output_past": true,
"pad_token_id": 0,
"relative_attention_num_buckets": 32,
"tie_word_embeddings": false,
"vocab_size": 32128
}

View File

@ -0,0 +1,125 @@
{
"additional_special_tokens": [
"<extra_id_0>",
"<extra_id_1>",
"<extra_id_2>",
"<extra_id_3>",
"<extra_id_4>",
"<extra_id_5>",
"<extra_id_6>",
"<extra_id_7>",
"<extra_id_8>",
"<extra_id_9>",
"<extra_id_10>",
"<extra_id_11>",
"<extra_id_12>",
"<extra_id_13>",
"<extra_id_14>",
"<extra_id_15>",
"<extra_id_16>",
"<extra_id_17>",
"<extra_id_18>",
"<extra_id_19>",
"<extra_id_20>",
"<extra_id_21>",
"<extra_id_22>",
"<extra_id_23>",
"<extra_id_24>",
"<extra_id_25>",
"<extra_id_26>",
"<extra_id_27>",
"<extra_id_28>",
"<extra_id_29>",
"<extra_id_30>",
"<extra_id_31>",
"<extra_id_32>",
"<extra_id_33>",
"<extra_id_34>",
"<extra_id_35>",
"<extra_id_36>",
"<extra_id_37>",
"<extra_id_38>",
"<extra_id_39>",
"<extra_id_40>",
"<extra_id_41>",
"<extra_id_42>",
"<extra_id_43>",
"<extra_id_44>",
"<extra_id_45>",
"<extra_id_46>",
"<extra_id_47>",
"<extra_id_48>",
"<extra_id_49>",
"<extra_id_50>",
"<extra_id_51>",
"<extra_id_52>",
"<extra_id_53>",
"<extra_id_54>",
"<extra_id_55>",
"<extra_id_56>",
"<extra_id_57>",
"<extra_id_58>",
"<extra_id_59>",
"<extra_id_60>",
"<extra_id_61>",
"<extra_id_62>",
"<extra_id_63>",
"<extra_id_64>",
"<extra_id_65>",
"<extra_id_66>",
"<extra_id_67>",
"<extra_id_68>",
"<extra_id_69>",
"<extra_id_70>",
"<extra_id_71>",
"<extra_id_72>",
"<extra_id_73>",
"<extra_id_74>",
"<extra_id_75>",
"<extra_id_76>",
"<extra_id_77>",
"<extra_id_78>",
"<extra_id_79>",
"<extra_id_80>",
"<extra_id_81>",
"<extra_id_82>",
"<extra_id_83>",
"<extra_id_84>",
"<extra_id_85>",
"<extra_id_86>",
"<extra_id_87>",
"<extra_id_88>",
"<extra_id_89>",
"<extra_id_90>",
"<extra_id_91>",
"<extra_id_92>",
"<extra_id_93>",
"<extra_id_94>",
"<extra_id_95>",
"<extra_id_96>",
"<extra_id_97>",
"<extra_id_98>",
"<extra_id_99>"
],
"eos_token": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"pad_token": {
"content": "<pad>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
},
"unk_token": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false
}
}

File diff suppressed because one or more lines are too long

View File

@ -0,0 +1,939 @@
{
"added_tokens_decoder": {
"0": {
"content": "<pad>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"1": {
"content": "</s>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"2": {
"content": "<unk>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32000": {
"content": "<extra_id_99>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32001": {
"content": "<extra_id_98>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32002": {
"content": "<extra_id_97>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32003": {
"content": "<extra_id_96>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32004": {
"content": "<extra_id_95>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32005": {
"content": "<extra_id_94>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32006": {
"content": "<extra_id_93>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32007": {
"content": "<extra_id_92>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32008": {
"content": "<extra_id_91>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32009": {
"content": "<extra_id_90>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32010": {
"content": "<extra_id_89>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32011": {
"content": "<extra_id_88>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32012": {
"content": "<extra_id_87>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32013": {
"content": "<extra_id_86>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32014": {
"content": "<extra_id_85>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32015": {
"content": "<extra_id_84>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32016": {
"content": "<extra_id_83>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32017": {
"content": "<extra_id_82>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32018": {
"content": "<extra_id_81>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32019": {
"content": "<extra_id_80>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32020": {
"content": "<extra_id_79>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32021": {
"content": "<extra_id_78>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32022": {
"content": "<extra_id_77>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32023": {
"content": "<extra_id_76>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32024": {
"content": "<extra_id_75>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32025": {
"content": "<extra_id_74>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32026": {
"content": "<extra_id_73>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32027": {
"content": "<extra_id_72>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32028": {
"content": "<extra_id_71>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32029": {
"content": "<extra_id_70>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32030": {
"content": "<extra_id_69>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32031": {
"content": "<extra_id_68>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32032": {
"content": "<extra_id_67>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32033": {
"content": "<extra_id_66>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32034": {
"content": "<extra_id_65>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32035": {
"content": "<extra_id_64>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32036": {
"content": "<extra_id_63>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32037": {
"content": "<extra_id_62>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32038": {
"content": "<extra_id_61>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32039": {
"content": "<extra_id_60>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32040": {
"content": "<extra_id_59>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32041": {
"content": "<extra_id_58>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32042": {
"content": "<extra_id_57>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32043": {
"content": "<extra_id_56>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32044": {
"content": "<extra_id_55>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32045": {
"content": "<extra_id_54>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32046": {
"content": "<extra_id_53>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32047": {
"content": "<extra_id_52>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32048": {
"content": "<extra_id_51>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32049": {
"content": "<extra_id_50>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32050": {
"content": "<extra_id_49>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32051": {
"content": "<extra_id_48>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32052": {
"content": "<extra_id_47>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32053": {
"content": "<extra_id_46>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32054": {
"content": "<extra_id_45>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32055": {
"content": "<extra_id_44>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32056": {
"content": "<extra_id_43>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32057": {
"content": "<extra_id_42>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32058": {
"content": "<extra_id_41>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32059": {
"content": "<extra_id_40>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32060": {
"content": "<extra_id_39>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32061": {
"content": "<extra_id_38>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32062": {
"content": "<extra_id_37>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32063": {
"content": "<extra_id_36>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32064": {
"content": "<extra_id_35>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32065": {
"content": "<extra_id_34>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32066": {
"content": "<extra_id_33>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32067": {
"content": "<extra_id_32>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32068": {
"content": "<extra_id_31>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32069": {
"content": "<extra_id_30>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32070": {
"content": "<extra_id_29>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32071": {
"content": "<extra_id_28>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32072": {
"content": "<extra_id_27>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32073": {
"content": "<extra_id_26>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32074": {
"content": "<extra_id_25>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32075": {
"content": "<extra_id_24>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32076": {
"content": "<extra_id_23>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32077": {
"content": "<extra_id_22>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32078": {
"content": "<extra_id_21>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32079": {
"content": "<extra_id_20>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32080": {
"content": "<extra_id_19>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32081": {
"content": "<extra_id_18>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32082": {
"content": "<extra_id_17>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32083": {
"content": "<extra_id_16>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32084": {
"content": "<extra_id_15>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32085": {
"content": "<extra_id_14>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32086": {
"content": "<extra_id_13>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32087": {
"content": "<extra_id_12>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32088": {
"content": "<extra_id_11>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32089": {
"content": "<extra_id_10>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32090": {
"content": "<extra_id_9>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32091": {
"content": "<extra_id_8>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32092": {
"content": "<extra_id_7>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32093": {
"content": "<extra_id_6>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32094": {
"content": "<extra_id_5>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32095": {
"content": "<extra_id_4>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32096": {
"content": "<extra_id_3>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32097": {
"content": "<extra_id_2>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32098": {
"content": "<extra_id_1>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
},
"32099": {
"content": "<extra_id_0>",
"lstrip": false,
"normalized": false,
"rstrip": false,
"single_word": false,
"special": true
}
},
"additional_special_tokens": [
"<extra_id_0>",
"<extra_id_1>",
"<extra_id_2>",
"<extra_id_3>",
"<extra_id_4>",
"<extra_id_5>",
"<extra_id_6>",
"<extra_id_7>",
"<extra_id_8>",
"<extra_id_9>",
"<extra_id_10>",
"<extra_id_11>",
"<extra_id_12>",
"<extra_id_13>",
"<extra_id_14>",
"<extra_id_15>",
"<extra_id_16>",
"<extra_id_17>",
"<extra_id_18>",
"<extra_id_19>",
"<extra_id_20>",
"<extra_id_21>",
"<extra_id_22>",
"<extra_id_23>",
"<extra_id_24>",
"<extra_id_25>",
"<extra_id_26>",
"<extra_id_27>",
"<extra_id_28>",
"<extra_id_29>",
"<extra_id_30>",
"<extra_id_31>",
"<extra_id_32>",
"<extra_id_33>",
"<extra_id_34>",
"<extra_id_35>",
"<extra_id_36>",
"<extra_id_37>",
"<extra_id_38>",
"<extra_id_39>",
"<extra_id_40>",
"<extra_id_41>",
"<extra_id_42>",
"<extra_id_43>",
"<extra_id_44>",
"<extra_id_45>",
"<extra_id_46>",
"<extra_id_47>",
"<extra_id_48>",
"<extra_id_49>",
"<extra_id_50>",
"<extra_id_51>",
"<extra_id_52>",
"<extra_id_53>",
"<extra_id_54>",
"<extra_id_55>",
"<extra_id_56>",
"<extra_id_57>",
"<extra_id_58>",
"<extra_id_59>",
"<extra_id_60>",
"<extra_id_61>",
"<extra_id_62>",
"<extra_id_63>",
"<extra_id_64>",
"<extra_id_65>",
"<extra_id_66>",
"<extra_id_67>",
"<extra_id_68>",
"<extra_id_69>",
"<extra_id_70>",
"<extra_id_71>",
"<extra_id_72>",
"<extra_id_73>",
"<extra_id_74>",
"<extra_id_75>",
"<extra_id_76>",
"<extra_id_77>",
"<extra_id_78>",
"<extra_id_79>",
"<extra_id_80>",
"<extra_id_81>",
"<extra_id_82>",
"<extra_id_83>",
"<extra_id_84>",
"<extra_id_85>",
"<extra_id_86>",
"<extra_id_87>",
"<extra_id_88>",
"<extra_id_89>",
"<extra_id_90>",
"<extra_id_91>",
"<extra_id_92>",
"<extra_id_93>",
"<extra_id_94>",
"<extra_id_95>",
"<extra_id_96>",
"<extra_id_97>",
"<extra_id_98>",
"<extra_id_99>"
],
"clean_up_tokenization_spaces": true,
"eos_token": "</s>",
"extra_ids": 100,
"legacy": false,
"model_max_length": 512,
"pad_token": "<pad>",
"sp_model_kwargs": {},
"tokenizer_class": "T5Tokenizer",
"unk_token": "<unk>"
}

View File

@ -132,6 +132,32 @@ class ModelSamplingStableCascade:
m.add_object_patch("model_sampling", model_sampling) m.add_object_patch("model_sampling", model_sampling)
return (m, ) return (m, )
class ModelSamplingSD3:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"shift": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step":0.01}),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "patch"
CATEGORY = "advanced/model"
def patch(self, model, shift):
m = model.clone()
sampling_base = comfy.model_sampling.ModelSamplingDiscreteFlow
sampling_type = comfy.model_sampling.CONST
class ModelSamplingAdvanced(sampling_base, sampling_type):
pass
model_sampling = ModelSamplingAdvanced(model.model.model_config)
model_sampling.set_parameters(shift=shift)
m.add_object_patch("model_sampling", model_sampling)
return (m, )
class ModelSamplingContinuousEDM: class ModelSamplingContinuousEDM:
@classmethod @classmethod
def INPUT_TYPES(s): def INPUT_TYPES(s):
@ -213,5 +239,6 @@ NODE_CLASS_MAPPINGS = {
"ModelSamplingDiscrete": ModelSamplingDiscrete, "ModelSamplingDiscrete": ModelSamplingDiscrete,
"ModelSamplingContinuousEDM": ModelSamplingContinuousEDM, "ModelSamplingContinuousEDM": ModelSamplingContinuousEDM,
"ModelSamplingStableCascade": ModelSamplingStableCascade, "ModelSamplingStableCascade": ModelSamplingStableCascade,
"ModelSamplingSD3": ModelSamplingSD3,
"RescaleCFG": RescaleCFG, "RescaleCFG": RescaleCFG,
} }

87
comfy_extras/nodes_sd3.py Normal file
View File

@ -0,0 +1,87 @@
import folder_paths
import comfy.sd
import comfy.model_management
import nodes
import torch
class TripleCLIPLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "clip_name1": (folder_paths.get_filename_list("clip"), ), "clip_name2": (folder_paths.get_filename_list("clip"), ), "clip_name3": (folder_paths.get_filename_list("clip"), )
}}
RETURN_TYPES = ("CLIP",)
FUNCTION = "load_clip"
CATEGORY = "advanced/loaders"
def load_clip(self, clip_name1, clip_name2, clip_name3):
clip_path1 = folder_paths.get_full_path("clip", clip_name1)
clip_path2 = folder_paths.get_full_path("clip", clip_name2)
clip_path3 = folder_paths.get_full_path("clip", clip_name3)
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2, clip_path3], embedding_directory=folder_paths.get_folder_paths("embeddings"))
return (clip,)
class EmptySD3LatentImage:
def __init__(self):
self.device = comfy.model_management.intermediate_device()
@classmethod
def INPUT_TYPES(s):
return {"required": { "width": ("INT", {"default": 512, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"height": ("INT", {"default": 512, "min": 16, "max": nodes.MAX_RESOLUTION, "step": 8}),
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096})}}
RETURN_TYPES = ("LATENT",)
FUNCTION = "generate"
CATEGORY = "latent/sd3"
def generate(self, width, height, batch_size=1):
latent = torch.ones([batch_size, 16, height // 8, width // 8], device=self.device) * 0.0609
return ({"samples":latent}, )
class CLIPTextEncodeSD3:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP", ),
"clip_l": ("STRING", {"multiline": True, "dynamicPrompts": True}),
"clip_g": ("STRING", {"multiline": True, "dynamicPrompts": True}),
"t5xxl": ("STRING", {"multiline": True, "dynamicPrompts": True}),
"empty_padding": (["none", "empty_prompt"], )
}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "advanced/conditioning"
def encode(self, clip, clip_l, clip_g, t5xxl, empty_padding):
no_padding = empty_padding == "none"
tokens = clip.tokenize(clip_g)
if len(clip_g) == 0 and no_padding:
tokens["g"] = []
if len(clip_l) == 0 and no_padding:
tokens["l"] = []
else:
tokens["l"] = clip.tokenize(clip_l)["l"]
if len(t5xxl) == 0 and no_padding:
tokens["t5xxl"] = []
else:
tokens["t5xxl"] = clip.tokenize(t5xxl)["t5xxl"]
if len(tokens["l"]) != len(tokens["g"]):
empty = clip.tokenize("")
while len(tokens["l"]) < len(tokens["g"]):
tokens["l"] += empty["l"]
while len(tokens["l"]) > len(tokens["g"]):
tokens["g"] += empty["g"]
cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
return ([[cond, {"pooled_output": pooled}]], )
NODE_CLASS_MAPPINGS = {
"TripleCLIPLoader": TripleCLIPLoader,
"EmptySD3LatentImage": EmptySD3LatentImage,
"CLIPTextEncodeSD3": CLIPTextEncodeSD3,
}

View File

@ -1964,6 +1964,7 @@ def init_custom_nodes():
"nodes_attention_multiply.py", "nodes_attention_multiply.py",
"nodes_advanced_samplers.py", "nodes_advanced_samplers.py",
"nodes_webcam.py", "nodes_webcam.py",
"nodes_sd3.py",
] ]
import_failed = [] import_failed = []