Merge branch 'master' into m957ymj75urz-dynamic-prompting

This commit is contained in:
comfyanonymous 2023-02-20 23:49:55 -05:00
commit 8683ea4248
7 changed files with 110 additions and 15 deletions

View File

@ -20,6 +20,8 @@ This ui will let you design and execute advanced stable diffusion pipelines usin
- Saving/Loading workflows as Json files.
- Nodes interface can be used to create complex workflows like one for [Hires fix](https://comfyanonymous.github.io/ComfyUI_examples/2_pass_txt2img/) or much more advanced ones.
- [Area Composition](https://comfyanonymous.github.io/ComfyUI_examples/area_composition/)
- [Inpainting](https://comfyanonymous.github.io/ComfyUI_examples/inpaint/) with both regular and inpainting models.
- [ControlNet](https://comfyanonymous.github.io/ComfyUI_examples/controlnet/)
- Starts up very fast.
- Works fully offline: will never download anything.

View File

@ -3,6 +3,7 @@ CPU = 0
NO_VRAM = 1
LOW_VRAM = 2
NORMAL_VRAM = 3
HIGH_VRAM = 4
accelerate_enabled = False
vram_state = NORMAL_VRAM
@ -27,10 +28,11 @@ if "--lowvram" in sys.argv:
set_vram_to = LOW_VRAM
if "--novram" in sys.argv:
set_vram_to = NO_VRAM
if "--highvram" in sys.argv:
vram_state = HIGH_VRAM
if set_vram_to != NORMAL_VRAM:
if set_vram_to == LOW_VRAM or set_vram_to == NO_VRAM:
try:
import accelerate
accelerate_enabled = True
@ -44,7 +46,7 @@ if set_vram_to != NORMAL_VRAM:
total_vram_available_mb = int(max(256, total_vram_available_mb))
print("Set vram state to:", ["CPU", "NO VRAM", "LOW VRAM", "NORMAL VRAM"][vram_state])
print("Set vram state to:", ["CPU", "NO VRAM", "LOW VRAM", "NORMAL VRAM", "HIGH VRAM"][vram_state])
current_loaded_model = None
@ -57,18 +59,24 @@ def unload_model():
global current_loaded_model
global model_accelerated
global current_gpu_controlnets
global vram_state
if current_loaded_model is not None:
if model_accelerated:
accelerate.hooks.remove_hook_from_submodules(current_loaded_model.model)
model_accelerated = False
current_loaded_model.model.cpu()
#never unload models from GPU on high vram
if vram_state != HIGH_VRAM:
current_loaded_model.model.cpu()
current_loaded_model.unpatch_model()
current_loaded_model = None
if len(current_gpu_controlnets) > 0:
for n in current_gpu_controlnets:
n.cpu()
current_gpu_controlnets = []
if vram_state != HIGH_VRAM:
if len(current_gpu_controlnets) > 0:
for n in current_gpu_controlnets:
n.cpu()
current_gpu_controlnets = []
def load_model_gpu(model):
@ -87,7 +95,7 @@ def load_model_gpu(model):
current_loaded_model = model
if vram_state == CPU:
pass
elif vram_state == NORMAL_VRAM:
elif vram_state == NORMAL_VRAM or vram_state == HIGH_VRAM:
model_accelerated = False
real_model.cuda()
else:

View File

@ -178,7 +178,6 @@ def load_embed(embedding_name, embedding_directory):
valid_file = t
break
if valid_file is None:
print("warning, embedding {} does not exist, ignoring".format(embed_path))
return None
else:
embed_path = valid_file
@ -187,7 +186,10 @@ def load_embed(embedding_name, embedding_directory):
import safetensors.torch
embed = safetensors.torch.load_file(embed_path, device="cpu")
else:
embed = torch.load(embed_path, weights_only=True, map_location="cpu")
if 'weights_only' in torch.load.__code__.co_varnames:
embed = torch.load(embed_path, weights_only=True, map_location="cpu")
else:
embed = torch.load(embed_path, map_location="cpu")
if 'string_to_param' in embed:
values = embed['string_to_param'].values()
else:
@ -218,18 +220,28 @@ class SD1Tokenizer:
tokens = []
for t in parsed_weights:
to_tokenize = unescape_important(t[0]).replace("\n", " ").split(' ')
for word in to_tokenize:
while len(to_tokenize) > 0:
word = to_tokenize.pop(0)
temp_tokens = []
embedding_identifier = "embedding:"
if word.startswith(embedding_identifier) and self.embedding_directory is not None:
embedding_name = word[len(embedding_identifier):].strip('\n')
embed = load_embed(embedding_name, self.embedding_directory)
if embed is None:
stripped = embedding_name.strip(',')
if len(stripped) < len(embedding_name):
embed = load_embed(stripped, self.embedding_directory)
if embed is not None:
to_tokenize.insert(0, embedding_name[len(stripped):])
if embed is not None:
if len(embed.shape) == 1:
temp_tokens += [(embed, t[1])]
else:
for x in range(embed.shape[0]):
temp_tokens += [(embed[x], t[1])]
else:
print("warning, embedding:{} does not exist, ignoring".format(embedding_name))
elif len(word) > 0:
tt = self.tokenizer(word)["input_ids"][1:-1]
for x in tt:

View File

@ -29,6 +29,7 @@ if __name__ == "__main__":
print("\t--dont-upcast-attention\t\tDisable upcasting of attention \n\t\t\t\t\tcan boost speed but increase the chances of black images.\n")
print("\t--use-split-cross-attention\tUse the split cross attention optimization instead of the sub-quadratic one.\n\t\t\t\t\tIgnored when xformers is used.")
print()
print("\t--highvram\t\t\tBy default models will be unloaded to CPU memory after being used.\n\t\t\t\t\tThis option keeps them in GPU memory.\n")
print("\t--normalvram\t\t\tUsed to force normal vram use if lowvram gets automatically enabled.")
print("\t--lowvram\t\t\tSplit the unet in parts to use less vram.")
print("\t--novram\t\t\tWhen lowvram isn't enough.")
@ -208,6 +209,7 @@ class PromptExecutor:
executed = set(executed)
for x in executed:
self.old_prompt[x] = copy.deepcopy(prompt[x])
torch.cuda.empty_cache()
def validate_inputs(prompt, item):
unique_id = item

View File

@ -0,0 +1,71 @@
model:
base_learning_rate: 7.5e-05
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: hybrid # important
monitor: val/loss_simple_ema
scale_factor: 0.18215
finetune_keys: null
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 9 # 4 data + 4 downscaled image + 1 mask
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder

View File

@ -759,7 +759,7 @@ def load_custom_nodes():
module_path = os.path.join(CUSTOM_NODE_PATH, possible_module)
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
module_name = "custom_node_module.{}".format(possible_module)
module_name = possible_module
try:
if os.path.isfile(module_path):
module_spec = importlib.util.spec_from_file_location(module_name, module_path)

View File

@ -85,7 +85,7 @@
{
"cell_type": "markdown",
"source": [
"Run ComfyUI:"
"Run ComfyUI (use the fp16 model configs for more speed):"
],
"metadata": {
"id": "gggggggggg"
@ -112,7 +112,7 @@
"\n",
"threading.Thread(target=iframe_thread, daemon=True, args=(8188,)).start()\n",
"\n",
"!python main.py"
"!python main.py --highvram"
],
"metadata": {
"id": "hhhhhhhhhh"